
Master’s thesis

Deep Learning Methods for
Quantum Many-body Systems
A Study on Neural Quantum States

Daniel Haas Becattini

Computational Sciences: Physics
60 ECTS study points

Department of Physics
Faculty of Mathematics and Natural Sciences

Spring 2026

Daniel Haas Becattini

Deep Learning Methods for Quantum
Many-body Systems

A Study on Neural Quantum States

Abstract

The theoretical understanding behind the principles of quantum mechanics is just the first
step towards solving quantum problems in real-world scenarios. Recently, a promising new
field has emerged at the intersection of quantum variational methods and machine learning.
This approach, named Neural Quantum States, takes advantage of neural networks as universal
approximators to efficiently parametrise quantum systems.

This thesis explores the intersection of quantum many-body problems and machine learn-
ing, focussing on the application of neural network architectures to solve challenging quantum
systems. We specifically investigate three methods: a standard variational Monte Carlo (VMC)
parametrisation, a restricted Boltzmann machine (RBM), and a Deep Set feed-forward net-
work (DSFFN). We applied these ansätze to two bound fermionic systems: a one-dimensional
polarised fermionic system with Gaussian finite-range interaction, up to six particles and a two-
dimensional quantum dots system with Coulomb interaction, up to 20 particles. The study
employs Slater-Jastrow variants for the ansätze to impose fermionic antisymmetry, correlations,
and cusp conditions. We experimented with various machine learning optimisation techniques,
including an extensive Bayesian hyperparameter search, several well-known machine learning op-
timisers, and a stochastic reconfiguration, a quantum analogue of the natural gradient optimiser,
known for its advantage in capturing the geometry of the quantum landscape.

Our implementation is based on Python, aiming at building a modern, modular framework
with reasonable efficiency provided by using JAX as back-end. We compare the performance
of these methods, discussing their strengths and limitations in representing quantum states
efficiently. Our computational efficiency evaluation revealed reasonable scalability with JAX as
back-end, though not matching C++ implementations as expected.

We successfully obtained ground-state energies, energy components, density profiles, and
correlation energies for quantum systems replicating the literature results with occasional better
accuracy and with calculations performed on a small personal computer. Our results for 1D
systems consistently surpassed Hartree-Fock and matched small-basis CI calculations. For 2D
quantum dots, the addition of correlation factors repeatedly yielded lower energies than Hartree-
Fock, approaching DMC calculations and even surpassing them in one instance using Stochastic
Reconfiguration. We addressed the challenges of training neural networks in this unsupervised
manner, highlighting the importance of reference energy values and correlation factors. Although
more expressive models such as DSFFN showed excellent results, they were harder to train,
requiring a balance between model complexity and user intuition.

1

Acknowledgements

This thesis is what brought me to Oslo, but my friends are the reason I stay. I dedicate this
work to all my friends and family. To those who started to love me because I came into their
life and those who did not stop despite me leaving. None of this would be possible without the
support of my family. None of this would be pleasant without the presence of my friends.

I would especially like to thank my supervisor, Morten Hjorth-Jensen, for all the guidance
and support. Your enthusiasm and trust in whatever path I wanted to explore kept me motivated
from the first day of this project onwards.

A special thank you to Nigar Abbasova, Adam Jakobsen, and Leah Hansen, for being the
best second family I could have asked for. To Anna Aasen and Jonny Aarstad Igeh for taking
me into the group and making me feel like I belonged somewhere, and to Håkon Kvernmoen,
who, on top of that, endured my non-sensical questions about quantum mechanics, convincing
me they were in fact not trivial. Finally, to everyone at CCSE: office mates, lunch companies,
and table tennis rivals, thank you.

2

Contents

1 Introduction 6
1.1 The Quantum Many-body Problem . 6
1.2 The Many-body Problem as a Machine Learning Task 7
1.3 Overview and Thesis Structure . 7

I Theory 9

2 Quantum Physics Background 10
2.1 Basic Linear Algebra background . 10

2.1.1 Hilbert Spaces . 12
2.1.2 From Euclidian Vectors to Functions . 13
2.1.3 Combining Spaces . 14

2.2 Basic Quantum physics . 15
2.2.1 Why Schrödinger? . 15
2.2.2 Observables and Operators . 16
2.2.3 Composite Systems . 16
2.2.4 Pure States, Mixed States and Density Operators 18
2.2.5 Variational Principle . 19

2.3 Many-body Systems . 20
2.3.1 Why Not Schrödinger? . 20
2.3.2 Fock Space . 22
2.3.3 Creation and Annihilation Operators . 23
2.3.4 Operators in Second Quantisation . 24

2.4 Hartree-Fock . 25
2.5 Full Configuration Interaction . 26
2.6 Fermionic Systems . 26
2.7 Classical and Quantum Correlations . 30

3 Computational Background 32
3.1 Sampling and Markov Chains . 32
3.2 Markov Chain Monte Carlo . 34

3.2.1 Metropolis Algorithm . 37
3.3 Variational Monte Carlo . 38

3.3.1 Metropolis Algorithm and VMC . 40
3.4 Diffusion Monte Carlo . 42

3.4.1 Langevin Metropolis Importance Sampling 43

4 Machine Learning Background 45
4.1 Statistical Learning . 46

4.1.1 Learning as An Optimisation Problem . 46
4.2 Gradient-based Optimisation . 47

3

Contents Contents

4.2.1 Stochastic Gradient Descent . 49
4.2.2 Natural Gradient . 50
4.2.3 Quantum Natural Gradient . 51

4.3 Artificial Neural Networks . 52
4.3.1 Boltzmann Machines . 53
4.3.2 Feed-Forward Neural Networks . 55

4.4 Reinforcement Learning and VMC . 59
4.4.1 Neural Quantum States . 60

II Methods 62

5 Methods and Implementations 63
5.1 Trial Wavefunctions . 63

5.1.1 Standard VMC Ansatz . 63
5.1.2 Restricted Boltzmann Machine Neural Quantum States 64
5.1.3 Feed-Forward Neural Quantum States . 65
5.1.4 One and Two-Body Densities . 66

5.2 Computational Differentiation . 67
5.2.1 Automatic Differentiation . 68

5.3 Just in Time Compilation . 69
5.4 Codebase Overview . 69

5.4.1 Models . 70
5.4.2 Optimisers . 70
5.4.3 Hamiltonians . 71
5.4.4 Samplers . 71
5.4.5 State . 72
5.4.6 Backend . 72
5.4.7 Parameter Class . 73
5.4.8 The Wavefunction Base Class . 74
5.4.9 Simulation Scripts . 74

5.5 General Training Strategies . 74
5.5.1 Pretraining and Regularised Potential . 74
5.5.2 Sampler Tuning . 75
5.5.3 Clipping Gradients and Energy Values . 76
5.5.4 Parallelisation . 76

5.6 Quantifying uncertainties . 76
5.6.1 Combining Errors . 77

5.7 Kronecker-factored Approximate Curvature . 78
5.7.1 Trust Regions and Tikhonov Regularisation 78

5.8 Hyperparameter Search . 79

III Results and Discussion 81

6 One-dimensional trapped spinless fermions 82
6.1 Initial Comparisons . 82

6.1.1 Correlation Factor . 84
6.2 Hyperparameter Search . 85

6.2.1 Optimisers . 86
6.2.2 Importance Sampling . 87

6.3 Energy Components . 88

4

Contents Contents

6.4 One-body Densities . 90
6.5 Overall Energy Comparison . 91
6.6 Time Scaling Analysis . 92

7 Two-dimensional Quantum Dots 95
7.1 Initial Comparisons . 95
7.2 Hyperparameter search . 96

7.2.1 Optimisers . 96
7.2.2 Correlation Factor . 97

7.3 One and Two-body Densities . 99
7.4 Overall Energy Comparison . 103
7.5 Time Scaling Analysis . 107

IV Conclusion 109

8 Conclusion 110

V Appendices 112
A Eliminating dimensions . 113
B VMC derivations . 114
C Steepest descent derivations . 114
D Gaussian-binary RBM expressions . 114
E Minimal Running NQS Script . 115
F Additional Results 1D Case . 117
G Additional Results 2D Case . 118

5

Chapter 1

Introduction

1.1 The Quantum Many-Body Problem

Quantum mechanics stands as one of the most significant scientific achievements of the
twentieth century, impacting both technological developments and our understanding of reality
through its precise theoretical formalism. Despite substantial progress since the early 1920s, ap-
plying quantum mechanics to practical problems remains challenging, particularly for quantum
many-body systems. These systems are central to various fields of physics, including condensed
matter physics, quantum chemistry, atomic, molecular, and nuclear physics.

The core concepts of non-relativistic quantum mechanics are well condensed in the Schrödinger
equation. However, the theoretical framework is only part of the challenge, and modelling even
medium-sized interactive systems is a task of significant computational difficulty. This is because
the dimension of a quantum system, or the Hilbert space, scales exponentially, making an exact
solution of the Schrödinger equation for many-body systems unattainable. Though some classi-
cal systems also lack analytical solutions, this analysis focuses on the scaling of dimensionality,
which is significantly more challenging in quantum systems.

With the advent of computers, the focus shifted towards solving the Schrödinger equation
computationally and developing approximation methods to tackle larger systems. A brief de-
scription of some of the classical methods for approximating solutions follows: the Hartree-Fock
(HF) method [1], which provides a reasonably efficient first approximation, neglects higher-order
electron correlations by considering only a mean-field picture. Full Configuration Interaction
(FCI) [1] offers exact solutions within a given basis set but is computationally infeasible for
large systems due to exponential scaling. Truncated Configuration Interaction (CI) methods [2]
account for only some set of excitations, balancing accuracy and computational feasibility.

There are additional methods to include, but despite their effectiveness, they all face lim-
itations in either accuracy or scalability. Configuration Interaction methods, for example, are
currently restricted to around 20 particles [3]. Both the memory required to store the Hamilto-
nian matrix and the computational cost of diagonalisation scale in such a manner that exceeds
the capabilities of current computational resources.

In a simplistic way, solving the many-body problem means either learning to represent the
high-dimensional quantum states in a more efficient way and/or learning to sample observables
from them. One prominent method for specifically doing the latter is quantum Monte Carlo,
which is a conceptual cornerstone of our work. Under this label, we mention variational Monte
Carlo (VMC) and diffusion Monte Carlo (DMC) [4]. The former optimises a parameterised
guess for the wavefunction, using the variational principle to minimise the energy and obtain
the ground-state. If that state is obtained, other observables can be similarly sampled. Varia-
tional Monte Carlo provides a flexible approach to incorporate complicated wavefunctions, and
while it has the potential to be unbiased, its accuracy depends on the chosen ansatz. Diffusion
Monte Carlo improves upon VMC, offering higher accuracy at the cost of greater computational

6

Chapter 1. Introduction The Many-body Problem as a Machine Learning Task

complexity and a more heavy bias from a necessary fixed-node approximation. Therefore, it
is crucial to carefully select the functional form and the number of parameters. Even if the
correct representation is found, the computational cost of optimising the ansatz increases with
the number of parameters. The challenge lies in how to effectively represent quantum states
using parameterised functions, and machine learning offers one approach to this problem.

1.2 The Many-Body Problem as a Machine Learning Task

The field of machine learning (ML), since its early days, has similarly suffered with dimensionality-
exploding problems, in what is referred to as curse of dimensionality. This is because high-
dimensional data are incredibly sparse, so the amount of data required for a model to make
accurate predictions to unseen data grows exponentially.

Tensor networks (TN), conceptualised in 1971, were used in quantum many-body problems
in the 1990s [5] as perhaps the first crossover between machine learning and many-body physics.
Although not developed for machine learning purposes, the connections between TN and ML
are now better understood. The idea was to use area-law entanglement to build a network-like
ansatz with a polynomial number of parameters. TNs further allowed for symmetries on the
wavefunction to be enforced, but these methods did not generalise well beyond one-dimensional
systems.

In 2017, Carleo and Troyer [6] proposed a new type of parametrised ansatz based on a
restricted Boltzmann machine, a stochastic generative neural network specifically aimed at un-
supervised learning. Their approach was coined the term neural quantum states (NQS), and its
success led to an investigation between tensor networks and the newly defined neural quantum
states. We now know that neural quantum states display the same or higher expressive power
than practical tensor networks, while being more efficient [7]. This is because RBMs have been
shown to obey volume-law scaling, which allows them to represent quantum many-body states
irrespective of their level of entanglement [8].

RBMs are universal approximators [9], which led researchers to question if other universal
approximators could equally represent quantum states with a small number of parameters. Var-
ious neural network architectures, such as convolutional neural networks, feed-forward neural
networks, and graph neural networks, among others, have been shown to answer this positively
[10]. Certain NQS architectures have shown the capability to surpass classical techniques such as
coupled clustering for specific systems [11], while other approaches outperform state-of-the-art
DMC calculations [12]. Neural networks have also been used to accurately model excited states
[13], and even more recently to approximate the time evolution of quantum systems with great
results [14]. This evidence further points to neural networks as a promising path to solve the
quantum many-body problem.

This thesis aims to explore this recent intersection between quantum many-body problems
and machine learning. To do so, we compare how three methods perform in two bound fermionic
systems: a one-dimensional fully polarised fermion system and a two-dimensional quantum dots
system. The models tested were a standard VMC parameterisation, an RBM implementation,
and a specific variant of a feed-forward network. We further explored the use of Slater-Jastrow
variants for the ansätze to impose fermionic antisymmetry and correlations. The implementation
was carried out using Python with JAX, inspired by their recent efficient use in quantum many-
body problems [15, 16].

1.3 Overview and Thesis Structure

Trying to address the presented many-body problem bears resemblance to some of the meth-
ods that we are going to address in this thesis. It is like an optimisation problem, where we try
to minimise how wrong we are in our description of nature. Here, we have a space of theories or

7

Chapter 1. Introduction Overview and Thesis Structure

approaches, which is clearly infinite and which we test on a reference frame of arbitrary physical
systems. This exploration process is non-convex, and moving in one direction brings advantages,
accompanied by some disadvantages.

This thesis is not unique in its topics. Previous works have approached the same systems
and have used similar methods. However, I tried to make this work personal in its didactic
aspect. This means that theory is presented in a way that feels natural to me and connects
points that I consider fundamental. I have tried to include here the answer to every theoretical
question I asked myself along the way, with the amount of detail and rigour that at the time was
sufficient to understand concepts and, eventually, move on. If a certain approach seems too big
of a detour, I was probably connecting dots that for me are enlightening. If it seems too trivial,
I was probably covering a gap in my knowledge. With this comes an inevitable loss in linearity
of narrative, and that I tried to make evident when possible. On that note, the structure of the
thesis is presented below.

In the theory part, Chapter 2, provides a review of basic quantum mechanics, followed by
a discussion of quantum many-body physics, and a description of the systems examined in this
study. Chapter 3 focusses on the computational background, from the theory of Markov chains,
its connections with variational Monte Carlo, and diffusion Monte Carlo. Last in the theory
section, Chapter 4 starts with a theoretical treatment of statistical learning and optimisation
methods. We proceed by detailing the neural networks used and finish by connecting VMC with
reinforcement learning and neural quantum states.

With regard to methodology, Chapter 5 provides an in-depth look at our implementations.
We explain our codebase and the rationale behind certain decisions, with a minimal theoretical
treatment. Further, we show how different components are integrated and how investigations
were conducted.

The results are presented in Chapters 6 and 7, along with discussions and a critical evalua-
tion. Lastly, in Chapter 8, we assess whether the study goals were achieved and summarise the
conclusions with the possibility of improvements and future research directions.

8

Part I

Theory

9

Chapter 2

Quantum Physics Background

q

p

W
(
q
,
p
)|〈q|ψ〉|2|〈p|ψ〉|2

Figure 2.1: Wigner quasi-probability function W as function of position q and momentum p.

2.1 Basic Linear Algebra Background

Dirac Notation and Completeness

We start with a basic review of linear algebra for two main reasons. First, we want to
emphasise that from the beginning we are dealing with complex n-dimensional vector spaces,
sub-spaces of Cn, so that an element z ∈ CN can be represented as an n-tuple (z1, z2, ..., zn)
where zi is a complex number. Second, we want to migrate to the standard Dirac notation as
soon as possible, showing what it means and why we are doing it.

Using the Dirac notation, we represent a standard basis for the vector space {ei} with ket
vectors, written as {|i⟩}, with i ∈ N. A generic vector |a⟩ in this space can be decomposed in
terms of a complete basis as

|a⟩ =
∑
i

|i⟩ ai =
∑
i

|i⟩ ⟨i| |a⟩ .

10

Chapter 2. Quantum Physics Background Basic Linear Algebra background

In the second equality, the completeness of the basis is apparent, which can be represented
as

I =
∑
i

|i⟩ ⟨i| ,

with I being the identity matrix. This completeness relation is crucial in quantum mechanics
because it guarantees that the basis spans the entire vector space, allowing the decomposition
of a general |a⟩.

Operators and Adjoint Operators

A linear operator Ô is a mathematical object that maps one vector to another. We say it
“acts” on a vector |a⟩, returning another vector, as in Ô |a⟩ = |b⟩. We can also define the adjoint
of this operator as the operator that maps the dual [17] of vector |a⟩ to the dual of vector |b⟩. In
Dirac notation, this can be written ⟨a| Ô† = ⟨b|. Furthermore, in quantum-mechanical contexts,
the dual of the ket vector is called a bra vector, and we denote it ⟨a| = |a⟩†. This way, an inner
product is written ⟨a| |b⟩ := ⟨a|b⟩.

For an operator to be called linear, it must obey the following linearity property:

Ô(x |a⟩+ y |b⟩) = xÔ |a⟩+ yÔ |b⟩ ,

where x, y are scalars. One fundamental aspect of linear operators is that, given a choice of a
basis {|i⟩}, we can represent them as matrices. Thus, the linear transformation can be viewed
as a matrix-vector multiplication:

Ô |i⟩ =
∑
j

|j⟩Oji.

To obtain the matrix elements of the matrix representation of the operator Ô we can consider
the inner product of different basis vectors:

Oki = ⟨k| Ô |i⟩ =
∑
j

⟨k|j⟩Oji,

where |k⟩ and |j⟩ are basis vectors in the vector space on which Ô acts. The subsequent
application of linear operators can similarly be expressed as subsequent matrix multiplications,
which means that if Ĉ = ÂB̂, then

Cij =
∑
k

AikBkj .

From that it is clear that ÂB̂ ̸= B̂Â in general. This distinction can seem obvious, but de-
serves special attention for its implications in quantum mechanics. Let us define the commutator
of operators:

[Â, B̂] = ÂB̂ − B̂Â.

When the commutator of two operators is zero, they are said to commute with each other.

11

Chapter 2. Quantum Physics Background Basic Linear Algebra background

Joining the Dots

aWhen two operators commute,

• the sequence of measurements does not affect the result;

• it is possible to find states that are eigenstates for both operators, meaning we can
know the outcome for both measurements precisely and simultaneously;

• if an operator commutes with a special operator we call the Hamiltonian (Ĥ), it
can be associated with a conserved physical quantity.

aSince we are assuming some prior knowledge, we introduce these boxes, in which we connect what
is presented with not yet defined concepts. This is a clear compromise in linearity of narrative to make
the reading more interesting for those with prior knowledge.

Additional Matrix Properties

Linear algebra is the language of quantum mechanics. As such, there are several properties
of matrices that need to be mentioned, even if they seem to appear with no motivation for now.

• Hermitian Matrices: If a matrix A is such that A† = A, it is called Hermitian. In
quantum mechanics, this is relevant because every observable can be represented by a
Hermitian operator.

• Unitary Matrices: If a matrix A is such that its inverse is equal to its adjoint (A−1 = A†)
it is called a unitary matrix. This is relevant because unitary operators preserve the inner
product (⟨Ax,Ay⟩ = ⟨x, y⟩) and vector norms. Consequently, they preserve probability
amplitudes.

• Orthogonal Matrices: A unitary matrix with real elements is called orthogonal. They
are important because they represent transformations that do not break the orthogonality
of vectors - a crucial point in coordinate transformations.

2.1.1 Hilbert Spaces

Quantum and classical mechanical states are different conceptual objects. Unlike a classical
state, a general quantum state needs to be represented as elements of a vector space known as
a Hilbert space. In Newtonian mechanics, the vector spaces used are Euclidean. In contrast,
Hilbert vector spaces have some major differences.

First, Euclidean vector spaces are vector spaces over the real numbers, while Hilbert spaces
are more generally defined over the complex field. Additionally, Euclidian spaces are finite-
dimensional, whereas Hilbert spaces generalise the idea of an inner product to infinite dimension.
Finally, Hilbert spaces require us to be more precise with the concept of sequence convergence.
In particular, a Hilbert space must be Cauchy-complete. Intuitively, this means that every
sequence that “seems like” it should converge (to another element of the space) in fact does.

This third difference is more subtle because we get it for free in Euclidian spaces [18], and
thus, it does not often cross our minds - Euclidian spaces inherit Cauchy completeness from the
real numbers.

We do not intend to be rigorous in our definition of a Hilbert space, and a complete discussion
is found in [18]. We care about the convergence of sequences because we want to use calculus
in this vector space, and, therefore, limits have to be well defined. Furthermore, we often want
to expand quantum states as an infinite sum of eigenvectors of an observable, again requiring a
precise definition of limits.

12

Chapter 2. Quantum Physics Background Basic Linear Algebra background

2.1.2 From Euclidian Vectors to Functions

In this section, we transition from Euclidian vectors to function spaces. Some function spaces
can also be vector spaces, so we must define analogous properties for this type of space to be
mathematically consistent. Using the previous formalism, we can express the orthonormality of
basis vectors as

⟨i|j⟩ = δij :=

{
1, i = j

0 else,

where δij is called the Kronecker delta.

Orthogonality in Function Spaces

Function spaces, however, may have an infinite-dimensional basis, which means that they
require an infinite number of basis functions to span the space. Because of that, the inner
product becomes an integral. For Euclidian vectors, operations combine point coordinates via
some rule, such as addition. However, the image of a function “points to” many points at once,
possibly infinitely many. Therefore, the idea of an inner product is naturally extended by the
integral over a function multiplied by its dual.

Consider the (enumerable) set of functions {ψi : I → C}i∈N with I a closed interval. The
orthonormality condition now reads

⟨ψi|ψj⟩ =
∫
I
dxψ∗

i (x)ψj(x) = δij .

This is not that different from what we had before. Instead of having the product weighted
by the vector coefficients, we have it weighted by the function distribution.

Completeness and Function Expansion

In a complete function space, we can expand any general function a(x) on a complete and
discrete basis {ψi : I → C}i∈N

a(x) =
∑
i

ψi(x)ai,

where ai is the i-th component of a in the basis. A general component aj can be calculated by
projection of the function onto the basis

aj =
∑
i

δjiai =
∑
i

⟨ψj |ψi⟩ ai =
∑
i

∫
dxψ∗

j (x)ψi(x)ai =

∫
dxψ∗

j (x)a(x).

From this we can reconstruct a(x) from its components:

a(x) =
∑
j

ψj(x)

∫
dy ψ∗

j (y)a(y) =

∫
dy

∑
j

ψj(x)ψ
∗
j (y)

 a(y) = ∫ dy δ(x− y)a(y).

Here, δ(x − y), which we dare not call a function, is the Dirac delta and can be seen as
a continuous analogue of the Kronecker delta. All the similarities to the previous Euclidian
vector space formalism might now become obvious, and the discussion about operators is also
applicable.

So far we have omitted an important detail. Note that |ψi⟩ represents the complete state
in the Hilbert space, while the wave function ψi(x) is its projection into position space, which
means it is the amplitudes of such a state in the eigenstates of the position operator X̂. In that
sense, ψi(x) := ⟨x|ψi⟩.

13

Chapter 2. Quantum Physics Background Basic Linear Algebra background

Operators on Function Spaces

As eluded to before, in quantum mechanics, observables can be represented as linear opera-
tors. The action of a linear operator Ô on a function a(x) yields another function b(x). By the
completeness relation, the action of this operator can be defined by how it acts on a complete
basis {ψi}. We then write the operator in matrix notation Oij , and it follows

b(x) = Ôa(x)
=
∑
i

bi(x) =
∑
i

∑
j

Oijaj(x).

The matrix elements of the operator, Oji, can be computed by

Oji =

∫
dxψ∗

j (x)Ôψi(x).

Joining the Dots

Note that the matrix representation of the operator is infinite. As will become clear in
Sec. 2.2, all this discussion about linear algebra is largely so that we have the appropriate
toolbox to solve eigenvalue problems of the type Ôϕ(x) = ωϕ(x) under some basis {ψi}i∈N.

It is also possible to express the (continuous) matrix elements of the abstact operator Ô in
a continuous basis as expected:

⟨x| Ô |y⟩ = O(x, y).

2.1.3 Combining Spaces

Given two vector spaces V and W , it is useful to understand which space results from
combining them.

One way to combine spaces is through a tensor product. We write the tensor product between
the aforementioned spaces as U = V ⊗W . For this combination to yield a vector space, we need
to be able to map any pair of (v ∈ V,w ∈W) via a linear map to an element (v⊗w) ∈ U . The
element v ⊗w is called the tensor product of v and w.

If BV if a basis of V and BW if a basis of W , the basis of V ⊗W is the set {v ⊗ w|v ∈
BV , w ∈ BW }. Note that the dimension of the resulting space is the product of the dimension
of the original spaces.

Direct sums usually arise in vector spaces from the opposite problem of decomposing a vector
space U into smaller sub-spaces. In this case, it can be decomposed, for example, into the direct
sum V ⊕W if every vector u ∈ U can be expressed as u = v +w with v ∈ V and w ∈W , and
V ∩W = {0}.

Joining the Dots

If not for tensor products, we would not be able to represent the entangled states of a
composite system in quantum mechanics.

14

Chapter 2. Quantum Physics Background Basic Quantum physics

2.2 Basic Quantum Physics

Quantum states are vectors in the Hilbert space, or more accurately, equivalence classes of
vectors in the Hilbert space. That is because distinct vectors can represent the same observable
if they differ only by a constant nonzero factor λ. Hence, we say they represent the same state
|Ψ⟩ ∼ λ |Ψ⟩. Because λ is simply a scaling constant, we call this equivalence class a “ray”.

2.2.1 Why Schrödinger?

In this work, we do not deal with time-dependent systems. Nevertheless, for completeness
and a better understanding of the basics of quantum mechanics, it is relevant to give a simple
and not rigorous motivation for the time-dependent Schrödinger equation (TDSE). Our isolated
system, described by a state |Ψ⟩ in Hilbert space, can generally depend on time and space. As
a time evolution should not remove the state from the Hilbert space, we can relate states at
different times via some linear time-evolution operator,

|Ψ(t)⟩ = Ô(t) |Ψ(t0)⟩ . (2.1)

If we examine the action of such operator under an infinitesimal transformation, we can take
the Taylor expansion to first order, in which case

|Ψ(t0 + dt)⟩ = Ô(dt) |Ψ(t0)⟩ ≈ (1 + Λdt)) |Ψ(t0)⟩ .

Rearranging and taking limits leads to the definition for the temporal derivative of the wave
function

d |Ψ(t)⟩
dt

∣∣∣∣
t0

= Λ |Ψ(t0)⟩ .

The action of the Λ operator is still unspecified, but by examining some physics properties,
we can extract information about it. By Noether’s Theorem [19], for example, we know that time
translational invariances lead to the conservation of energy. This forces Λ to be proportional to
the Hamiltonian operator (Λ = ζH). Furthermore, partial derivatives are anti-Hermitian and we
know anti-Hermitian operators only have purely imaginary eigenvalues. This means that ζ must
be imaginary, because the Hamiltonian being Hermitian admits only real eigenvalues. We shall
not show it, but it is at least reasonable from a dimensional analysis that the proportionality
constant resolves to ζ = −i/ℏ, with ℏ the reduced Planck constant, leading to the time-dependent
Schrödinger equation:

iℏ
∂

∂t
|Ψ⟩ = Ĥ |Ψ⟩ .

Since ℏ is just a constant, we often change our scales so that ℏ = 1. This reasoning for
informally obtaining the Schrödinger equation might seem problematic. Usually we start from
a differential equation and move towards a solution, but Eq. 2.1 makes it seem like we somehow
start from a solution. This is not the case, as Ô is not known. However, we expect Ô to be
unitary in order to preserve probability amplitudes. Furthermore, such an operator must have
an exponential representation because we expect that, for any two points in time, Ô(t1)Ô(t2) =
Ô(t1 + t2). It can be easily verified that

|Ψ(t)⟩ = e−iĤt |Ψ(0)⟩ (2.2)

is a solution for the TDSE.
By the spectral theorem on self-adjoint operators, eigenstates of the Hamiltonian indeed

form a complete basis for the Hilbert space and hence we can expand the solution |Ψ(t)⟩ in

15

Chapter 2. Quantum Physics Background Basic Quantum physics

that basis. In its basis, of course, the Hamiltonian Ĥ is diagonal. Additionally, because of the
systems with which we will be dealing, and the computational scope of this work, we assume
a discrete set of eigenvalues En on its main diagonal. Indeed, we want to search for a basis in
which the eigenvalue equation

Ĥ |ψn⟩ = En |ψn⟩ , (2.3)

becomes trivial. This equation, called the time-independent Schrödinger equation (TISE), leads
to a very clean description of the time evolution in quantum mechanics. The expansion of |Ψ(t)⟩
in this basis can be writen

|Ψ(t)⟩ =
∑
n

cn |ψn(t)⟩ =
∑
n

cne
−iEnt |ψn⟩ .

2.2.2 Observables and Operators

In quantum mechanics, observables can only be discussed statistically, and they are computed
by taking the expectation value of the associated operator acting in a state. Let Ô be the
operator, we represent this average as

⟨Ô⟩ = ⟨ψ| Ô |ψ⟩ . (2.4)

As discussed in Sec. 2.2.1, the wavefunction can have a time dependence, |ψ(t)⟩, giving rise
to a time dependence on the statistical value ⟨Ô⟩t. The time dependence can be seen as coming
from the state vector or the operator. The former case is called the Schrödinger picture, and
the latter, the Heisemberg picture - both equivalent. Indeed, the solution for the TDSE in Eq.
2.2, allows us to write

⟨Ô⟩ = ⟨ψ0| eHtÔe−iHt |ψ0⟩ .

Consequently, we can interpret the state as time independent but evolving in time due to
the action of time-dependent operators, in which case we write

OH(t) = eHtÔe−iHt.

For pure states, yet to be defined, Eq. 2.4 can be expanded in the operator’s basis |ϕi⟩ as

⟨ψ| Ô |ψ⟩ =
∑
i

ci ⟨ψ|ϕi⟩ ⟨ϕi|ψ⟩ =
∑
i

ci| ⟨ϕi|ψ⟩ |2

where ci are the coefficients of the expansion. | ⟨ϕi|ψ⟩ |2 then represents the probability that |ψ⟩
is measured in state |ϕi⟩.

2.2.3 Composite Systems

To talk about many-body quantum systems, we need to talk about composite systems:
systems composed of more than one quantum object. Interestingly, the description of composite
systems varies depending on whether the subsystems are distinguishable or not. If they are,
their description is given by the following postulate, which we quote from [20]:

Postulate

“The state space of a composite physical system is the tensor product of the state spaces
of the component physical systems. Moreover, if we have systems numbered 1 through

16

Chapter 2. Quantum Physics Background Basic Quantum physics

n, and system number i is prepared in state |ψi⟩, then the joint state of the total system
is |ψ1⟩ ⊗ |ψ2⟩ ⊗ · · · ⊗ |ψn⟩”.

In fact, the number of dimensions in the state space can be understood as the number of
distinct configurations a system can adopt, which makes the formalism of the tensor product
evident. If systems i and j are each spanned by a respective basis {|ψi⟩}i≤N and {|ϕi⟩}i≤M ,
then we can describe the composite system by a state space with basis

{|ψiϕj⟩ : 1 ≤ i ≤ N, 1 ≤ j ≤M}.

The tensor product concatenates the vector spaces that describe the system. This parallel
with degrees of freedom also appears when we consider the Hilbert space with spin and position
degrees of freedom, in which case Htotal = Hposition ⊗Hspin.

The fact that the tensor product is not surjective motivates entanglement and also allows for
a correct description of composite systems. In Schrödingers’ words [21], “Maximal knowledge
of a total system does not necessarily include total knowledge of all of its parts, not even when
these are fully separated from each other and at the moment are not influencing each other at
all.”. The tensor product formalism allows the description of purely quantum behaviour.

There are states in the composite Hilbert space H = Hα ⊗ Hβ ⊗ · · · ⊗ Hζ that are not
accessible by one tensor product of any n states |α⟩ ⊗ |β⟩ ⊗ · · · ⊗ |ζ⟩. This is clearly the case for
entangled states but also for composite states of identical particles, as we shall see in Sec. 2.3.
In general, a pure state |Ψ⟩ from the total Hilbert space H above is written as

|Ψ⟩ =
∑
ij···n···

cij···n··· |αi⟩ ⊗ |βj⟩ ⊗ · · · ⊗ |γn⟩ ⊗ · · · :=
∑
ij···n···

cijk···n··· |αiβj · · · γn · · · ⟩ , (2.5)

where the coefficients in Latin index are free to run from 1 to the dimension of the respective
Hilbert space they refer to. For example, i is attached to a state from Hα, so αi could be any of
the elements of its basis. For the state in Eq. 2.5 to be physical, we need to ensure normalisation,∑

ij···n···
|cijk···n···|2 = 1,

but also a specific symmetry, if the composite system is of indistinguishable particles. This will
be better discussed in Sec. 2.3 and briefly introduced in the following Sec. 2.2.3.

A Simplified Discussion on Symmetry

In non-relativistic quantum mechanics, there are two fundamental categories of particles:
bosons and fermions. Different types of bosons or different types of fermions can differ in terms
of physical quantities such as mass and charge. However, after those physical quantities are set,
particles of the same category are completely indistinguishable. This is an empirical fact, rather
than something deduced from first principles.

Bosons and fermions have their name based on the different statistics they are perceived
to follow, namely Bose-Einstein and Fermi-Dirac statistics. That means that the probability
density of their wavefunctions behaves differently under particle exchange. Given a two-particle
system, the consequence of such indistinguishably can loosely be illustrated in the wavefunction
formalism as

|ψ(x1, x2)|2 = |ψ(x2, x1)|2 =⇒ ψ(x1, x2) = eiθψ(x2, x1).

If we attribute to this “switching of labels” an operator, P̂ex, it is reasonable to expect that
P̂ 2
ex = I, where I is the identity operator. Consequently, either θ = 0 or θ = π. In the first case,

17

Chapter 2. Quantum Physics Background Basic Quantum physics

the particles are bosons and ψ(x1, x2) = ψ(x2, x1). Else, ψ(x1, x2) = −ψ(x2, x1), and we say
the particles are fermions. This last case leads to Pauli’s exclusion principle, where two identical
fermions cannot occupy the same quantum state. In this simplified case, x1 = x2 = x leads
to ψ(x, x) = 0, and a zero probability density in any case where the particles have the same
position. The exclusion principle is, of course, not limited to position representation and can be
applied to any type of quantum states.

2.2.4 Pure States, Mixed States and Density Operators

Pure states are those that can be described by one ray in the Hilbert space and can be
expressed by a single ket vector. Not all systems can be represented this way, and there is no
specific reason to believe that a general system is in a pure state. Systems that do not fit this
description are referred to as mixed systems.

Mixed states can appear in two situations: first, a system could be prepared in a way that is
not known by the observer, in which case we represent it as a statistical combination of possible
preparations. The other instance is when describing an entagled state, such that there is no
definite state prior to measurement.

Since mixed states cannot be described with a single ket vector, they are instead described by
density matrices, which encapsulates the probabilistic information of the system. In particular,
any system, mixed or pure, can be described by density matrices,

ρ =
∑
i

pi|ψi⟩⟨ψi|. (2.6)

For a pure state |ψ⟩, we have ρ = |ψ⟩ ⟨ψ|. In contrast, in Eq. 2.6 the probabilities pi are the
probabilities of the respective pure state that constitutes the mixed state. The big difference
for ρ of pure versus mixed states is that for pure states, ρ2 = ρ, or equivalently, Tr[ρ2] = 1. In
general, for mixed states, Tr[ρ2] ≤ 1 and this quantity Tr[ρ2] is defined as the purity of the state.

Expectation Values as Traces of Density Operators

Traces of operators are basis-independent. As we know, the trace of a matrix is the sum
of its diagonal elements, but it can also be defined on a general basis {|i⟩}, which makes it
independent of a matrix representation of the operator.

Tr[O] :=
∑
i

⟨i| O |i⟩

Another reason why density operators are useful to bring up now is that they allow us to
express expectation values in a natural way. The action of an operator in a quantum state is
statistical by nature, so expressing them as expectations values is a necessity. If we have a pure
state ρ = |ψ⟩ ⟨ψ| and an operator for an observable Ô:

Tr[ρÔ] =
∑
i

⟨i| ρÔ |i⟩

=
∑
i

⟨i| |ψ⟩ ⟨ψ| Ô |i⟩

=
∑
i

ψi ⟨ψ| Ô |i⟩

=
∑
i

⟨ψ| Ô(ψi |i⟩)

= ⟨ψ| Ô |ψ⟩ .

18

Chapter 2. Quantum Physics Background Basic Quantum physics

Tr[ρÔ] is therefore the expectation value of the observable acting on the state. For the
general case of a mixed state with probabilities pj of being in pure states ψj we mention for
completeness, and without a proof,

Tr[ρÔ] =
∑
j

pj ⟨ψj | Ô |ψj⟩ .

2.2.5 Variational Principle

We have shown that the time-independent Schrödinger equation of Eq. 2.3 is an eigenvalue
problem which not only can help us solve the TDSE but has significance on its own. Furthermore,
all systems considered throughout this work are stationary.

When solving this eigenvalue problem computationally, we work with finite subsets of {ψi}i∈N,
which we call the computational basis. This is an approximation, since the matrix represen-
tation of our Hamiltonian operator Ĥ can be of infinite dimension, in general. Although the
approximate nature of the solution might seem frustrating at first, the variational principle offers
an understanding of the quality of this approximation after truncating the basis.

For simplicity, we are considering systems with discrete and potentially infinite energy levels
En, which can be ordered: E0 ≤ E1 ≤ · · · ≤ En ≤ From the orthonormality of the basis
functions, it follows

⟨ψi| Ĥ |ψj⟩ = δjiEj ,

and an arbitrary state guess |ϕ⟩ can be decomposed in this energy eigenbasis:

|ϕ⟩ =
∑
i

ci |ψi⟩ =
∑
i

|ψi⟩ ⟨ψi|ϕ⟩ .

It follows that the expectation value for the Hamiltonian can be written

⟨ϕ| Ĥ |ϕ⟩ =
∑
j

⟨ϕ|ψj⟩ ⟨ψj | Ĥ
∑
i

|ψi⟩ ⟨ψi|ϕ⟩

=
∑
ij

δij ⟨ϕ|ψj⟩ ⟨ψj | Ĥ |ψi⟩ ⟨ψi|ϕ⟩ =
∑
i

Ei| ⟨ψi|ϕ⟩ |2

≥ E0

∑
i

| ⟨ψi|ϕ⟩ |2.

Now, if we further normalise the trial state, we can write:

⟨ϕ| Ĥ |ϕ⟩
⟨ϕ|ϕ⟩ ≥ E0.

This is the variational principle, which tells us that the energy expectation value is bounded
from below by the energy of the ground-state, for any trial state |ϕ⟩. The equality then only
holds if the trial state is the ground-state. Consequently, we can use the expectation value of the
energy as a measure of the quality of a trial wave function. More generally, the variance of any
observable is another valid measure of the quality of the trial state, as any eigenstate necessarily
leads to a zero variance in the measured observable. To see this, recall that the variance of an
operator is given by ⟨Ô2⟩ − ⟨Ô⟩2. So if |ϕ⟩ = λ |ψn⟩,

Var(Ĥ) =
⟨ϕ| Ĥ2 |ϕ⟩
⟨ϕ|ϕ⟩ −

(
⟨ϕ| Ĥ |ϕ⟩
⟨ϕ|ϕ⟩

)2

= En ⟨ψn| Ĥ |ψn⟩ − (En)
2

= 0.

19

Chapter 2. Quantum Physics Background Many-body Systems

Conceptually, the variational principle is simple. Yet, it is central in several quantum many-
body methods, such as Hartree-Fock, variational Monte Carlo, and density functional theory.

Joining the Dots

When approaching the energy minimisation problem computationally, we have a
parametrised ansatz in terms of a set of parameters {αi}. We then assume a functional
form of the ansatz and vary the parameters, storing the ansatz that yields the lowest
energy as our “best guess” for the ground-state.

2.3 Many-Body Systems

Here and in the following subsections we show the need for a more robust theoretical toolkit
when dealing with multiparticle systems. We motivate and briefly explain some of the most
standard methods to address the many-body challenge. We, however, call attention to the fact
that the many-body methods here contained are not state-of-the-art approaches and serve merely
to show natural pathways one should consider when increasing the complexity of systems.

2.3.1 Why Not Schrödinger?

We have loosely motivated why the Schrödinger equation is used in quantum mechanics and
how it explains results that cannot be achieved with classical mechanics. Sadly, when dealing
with systems of multiple particles, solving the Schrödinger equation becomes impractical.

Consider an N -particle system, each in a state that can be described in Hilbert space Hi.
The Hilbert space containing all the particles is then written as the tensor product of all the
spaces,

H =

N⊗
i

Hi,

with a complete basis of this whole space being {|αβ . . . ω⟩}. However, not only does a general
state need to be normalised, it also has to be symmetric or antisymmetric, as discussed in Sec.
2.2.3. For a simplified two-particle case, with single-particle states α and β, we write

|αβ⟩± =
1√
2
[|α⟩ ⊗ |β⟩ ± |β⟩ ⊗ |α⟩] , (2.7)

with subscript ± denoting the correct symmetry. Note how physical states then become ex-
tremely rare as the dimension of the Hilbert space increases. To simplify wavefunction expres-
sions slightly, hereafter we will use the composite notation xi := (ri, σi), where ri represent
spatial coordinates and σi the spin coordinates.

For fermionic systems, the wavefunction that contains the coordinates xi of all particles and
obeys the anti-symmetrisation and normalisation constraints can be written

Ψ−(x1,x2, . . . ,xN) =
1√
N !

∑
π∈SN

(−1)sgn(π)ψπ(1)(x1)ψπ(2)(x2) . . . ψπ(N)(xN), (2.8)

Title and formalism of this section were taken from the excellent lecture notes on quantum many-body by
Thierry Giamarchi [22].

20

Chapter 2. Quantum Physics Background Many-body Systems

where the summation involves any permutation π of the symmetric group SN (the set of all
permutations of {1, 2, · · · , N}). Here, sgn(π) denotes the signature, or the number of inversions
of a permutation. Equation 2.8 is often written as

Ψ−(x1,x2, . . . ,xN) = Ŝ−
√
N !

N∏
i

ψi(xi), (2.9)

where we defined the general symmetrising operator,

Ŝ± :=
1

N !

∑
π∈SN

(±1)sgn(π)π̂,

and the permutator opperator, which acts as

π̂
∏

ψi(xi) :=
∏

ψi(xπ(i)) =
∏

ψπ(i)(xi).

For bosonic systems, there is the possibility that any state is occupied by any number of
particles. If we have for example, ni particles in state |αi⟩, it follows

Ψ+(x1,x2, . . . ,xN) = Ŝ+

√
N !∏N

j=1

√
nj !

N∏
i

ψi(xi). (2.10)

Joining the Dots

Note that [Ŝ±, Ô] = 0 for any Ô hermitian since there are no measurements capable of
distinguishing the particles.

Mathematical determinants naturally embed this fermionic antysymmetry of the operator Ŝ−
with permutation signature. We therefore write Eq. 2.9 as a determinant of the single-particle
wave functions, often called the Slater determinant:

Ψ−(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
ψ1(x1) ψ1(x2) . . . ψ1(xN)
ψ2(x1) ψ2(x2) . . . ψ2(xN)

...
ψN (x1) ψN (x2) . . . ψN (xN)

∣∣∣∣∣∣∣∣∣
:=

1√
N !

det{ψi(xj)}. (2.11)

For bosonic systems, in analogy, we use the permanent, albeit with a different normalisation
constant. Indeed, fermions cannot occupy the same quantum state, but bosons can, leading to
more possible permutations to be considered.

Ψ+(x1,x2, . . . ,xN) =

√∏
j nj !

N !


ψ1(x1) ψ1(x2) . . . ψ1(xN)
ψ2(x1) ψ2(x2) . . . ψ2(xN)

...
ψN (x1) ψN (x2) . . . ψN (xN)

 :=

√∏
j nj !

N !
perm{ψi(xj)}.

(2.12)

The first critical observation is that there can be an intractable number of terms in the
wavefunction, as determinants and permanents scale with N !. Beyond that, this formalism
leads to a convoluted way of defining how operators act on a general wavefunction. To see the

21

Chapter 2. Quantum Physics Background Many-body Systems

latter problem, note how we need to decompose the action of operators in the individual Hilbert
spaces of the particles on which they act. For example, as we expect the total momentum P̂tot
of a full system to be the sum of the momenta of individual particles, we write

P̂tot =

N∑
i

N⊗
k

Âk, with Ak =

{
P̂ if i = k

Ik otherwise
, (2.13)

where P̂ is the standard momentum operator, and I the identity. Both operators and wavefunc-
tions depend explicitly on the number of particles in this formalism, which leads to an extremely
system-specific algorithmic way of making calculations.

2.3.2 Fock Space

We then look for an alternative formalism to address the challenges encountered when at-
tempting to solve the Schrödinger equation using the conventional method for many-particle
systems. The new formalism which we now present is referred to as second quantisation, or
occupation number representation.

The intent of number representation is to turn the obstacle of indistinguishability of particles
into an advantage. In fact, knowing how many particles occupy each quantum state of the system
suffices to characterise it, and we write

|Ψ±⟩ = |n1n2 . . . ni . . .⟩ . (2.14)

If we can quantise the quantum states, the numbers ni, from left to right (even in bra states),
represent an ordering of the single-particle states following the ordering of eigenvalues of some
operator. This state is indeed a vector in a new type of vector space called Fock space. With
the appropriate state in this space, we can reconstruct any given wave function.

A general state in this Fock space is a linear combination of product states formed of single-
particle states of dimension up to n, meaning

|Ψ⟩± = a |0⟩ ⊕
∑
i

ai |ψi⟩ ⊕ · · · ⊕
∑
ij

aij |ψiψj⟩ ⊕ · · · .

The key point is to observe that this expression is the same as Eq. 2.14, while Eq. 2.14 uses
a more convenient basis, dubbed the occupancy number basis. Note that this is a basis built on
the single-particle states under the assumption that such a basis of non-interacting states even
exists. Nonetheless, we can write the Fock space as

F±(H) =
∞⊕
n=0

Ŝ±H⊗n,

where H⊗0 = C represents the zero-particle state and, in general H⊗n =
⊗n

j Hj is a composite
Hilbert space of n single particle systems. As mentioned, a general state in this space can be
written in the form of the state of Eq. 2.14.

Because of the way the Fock space is constructed via direct sums of Hilbert spaces, two
states with a different number of particles are automatically orthogonal. Additionally, in the
case where the total number of particles is the same, we can use the wavefunction expression to
show

⟨m1m2 . . .mk|n1n2 . . . nk⟩ =
k∏
i=1

δmini ,

which means we can have an orthonormal basis, allowing for operators to be written in such
basis as well.

22

Chapter 2. Quantum Physics Background Many-body Systems

Bosons Fermions
a†ia

†
j − a

†
ja

†
i = [a†i , a

†
j] = 0 a†ia

†
j + a†ja

†
i = {a

†
i , a

†
j} = 0

aiaj − ajai = [ai, aj] = 0 aiaj + ajai = {ai, aj} = 0

aia
†
j − a

†
jai = [ai, a

†
j] = δij aia

†
j + a†jai = {ai, a

†
j} = δij

Table 2.1: Algebra for identical particles in number representation. Inspired by Sakurai [23].

In general, allowing particles to be in the same state, if we have N particles with coordinates
xi and γ states

⟨x1 . . .xN |n1 . . . nγ⟩ =
√
N !√

n1! · · ·
√
nγ !

Ŝ±

 n1∏
i=1

ψ1(xi)

n1+n2∏
i=n1+1

ψ2(xi) · · ·
N∏

i=N−∑γ−1
i ni

ψγ(xi)

 .
(2.15)

2.3.3 Creation and Annihilation Operators

This framework aims to be general with respect to the number of particles. Consequently,
it is logical to introduce an operator that can add or subtract particles from the system. These
can be understood as generators for the basis of specific Fock spaces. For example, by applying
a creation operator a†i to the (only) state of the zero particle Fock space (vacuum state), we
generate a basis element of the one particle Fock space that corresponds to a single particle
in state αi. Similarly, there is an annihilation operator, ai, which is the adjoint of the creator
operator.

One caveat is that the algebra for these operators have to be different whether the particle
they create or annihilate are bosons or fermions. This means that the way they work under the
composition of operators need to be different. For example, for bosons, and using Eq. 2.10

a†i |n1 . . . ni . . . nγ⟩+ =
√
ni + 1 |n1 . . . ni+1 . . . nγ⟩+ ,

while for fermions, the antisymmetry requires that

a†i |n1 . . . ni . . . nγ⟩− = (1− ni)(−1)k |n1 . . . ni+1 . . . nγ⟩− ,

where k is the number of permutations required to take ni to the position of n1 by exchange of
neighbour numbers. Similarly, if we want to destroy the particles in state αi,

ai |n1 . . . ni . . . nγ⟩+ =
√
ni |n1 . . . ni−1ni−1 . . . nγ⟩+

ai |n1 . . . ni . . . nγ⟩− = ni(−1)k |n1 . . . ni−1ni−1 . . . nγ⟩−
We shall not demonstrate it here, but from the requirements above one can construct the

algebra from the creation and annihilation operators in Tab. 2.1 for fermions and bosons. What
matters for our purposes is that we have, in the Fock space: a complete basis of single-particle
states, operators respecting the commutation rules, and some definition of a vacuum state |∅⟩.

Conceptually, the vacuum state represents no particles occupying no state, namely |00 . . . 0⟩
and which allows for the generation of any basis of the Fock space in the following sense:

|n1 . . . ni . . . nγ⟩± =

(
γ∏
i

(a†i)
ni

√
ni!

)
|∅⟩ .

With this, some common sense things also follow: applying the annihilation operator to the
vacuum collapses it to zero. Likewise, annihilating the state αi from a system not containing

23

Chapter 2. Quantum Physics Background Many-body Systems

such a state or creating a particle in an occupied state also yields zero. Computing expectation
values becomes very convenient, given the commutation rules and tools like Wick’s theorem. A
trivial example for bosons, using the commutation relations, illustrates this:

⟨ψ|ψ⟩ = ⟨∅| aia†i |∅⟩
= ⟨∅| 1− a†iai |∅⟩ = 1.

2.3.4 Operators in Second Quantisation

Given that in the Fock space we pay special attention to single-particle states, it is important
to distinguish between operators that act on one particle at a time, two particles at a time, and
so on.

The momentum operator is an example of a one-body operator, while the potential operator,
when a two-particle interaction is included, is an example of a two-body operator. To make it
general in the number of particles and avoid the definition of Eq. 2.13, we write it in second
quantisation formalism. We can write the action of a one-body operator Ô on a one-particle
system by expanding the operator in the single-particle basis |α⟩ = a†α |∅⟩:

Ô =
∑
α,β

⟨α|O |β⟩ |α⟩ ⟨β| =
∑
α,β

⟨α|O |β⟩ a†α |∅⟩ ⟨∅| aβ. (2.16)

We can understand Eq. 2.16 as follows: the operator annihilates a particle in the state β and
creates a particle in the state α with a “transition probability” modelled by the matrix elements
⟨α|O |β⟩. Note that |∅⟩ ⟨∅| simply projects whatever state we have after β annihilation to the
vacuum. This is because we only had one particle to begin with. In a general state, we write

Ô =
∑
α,β

⟨α|O |β⟩ a†αaβ.

Another one-body operator of particular interest to us is the kinetic energy K̂ = P̂ 2/2. In
this case it makes sense to use the momentum basis {ki}:

K̂ =
∑
k1,k2

⟨k1|
P 2

2
|k2⟩ a†k1ak2

=
∑
k1,k2

δk1k2
k22
2
a†k1ak2

=
∑
k

k2

2
a†kak

In fact, a†kak will count the number of particles that have momentum k in the system, while
k2/2 will yield the energy of each of these particles.

If our Hamiltonian is to contain a potential energy contribution from particle interaction, we
need to also mention two-body operators. We start from a similar reasoning then the one for
one-body operators, but now, following [22], the expression Eq. 2.13 has the form

O =
1

2

∑
i ̸=j

Oij
⊗
k ̸=i,j

Ik, (2.17)

It is clear from the subscripts that Oij acts on the Hilbert space of the two particles i and j
at the same time. As we want to express the matrix elements of the two-body operator in the
basis of our single particle states, we want to know the elements

⟨αβ|O |γδ⟩ = 1

2
[⟨β| ⊗ ⟨α| ± ⟨α| ⊗ ⟨β|]O [|γ⟩ ⊗ |δ⟩ ± |δ⟩ ⊗ |γ⟩] .

24

Chapter 2. Quantum Physics Background Hartree-Fock

However, we need to pay attention to some points. When writing a many-body state as
|αβ⟩, symmetrisation and normalisation are already assumed, as in Eq. 2.7. Furthermore, the
ordering in which the states are written is important, especially given the antisymmetry of the
creation and annihilation operators for fermionic systems.

Now, to avoid carrying this tensor product, we use the following notation for what we call
ordered kets |αβ) = |α⟩ ⊗ |β⟩, without symmetrisation or normalisation constraints. In this
case, following the reasoning for the one-body operator, one can show that a general two-body
operator is written in second quantisation as

Ô =
1

2

∑
αβγδ

(αβ|O |γδ) a†αa†βaδaγ .

2.4 Hartree-Fock

The Hartree-Fock method (HF) is a foundational approach in quantum many-body theory.
Despite not giving the most precise results, it serves as an excellent starting point for under-
standing more complex methods and provides a benchmark for our results. It is computationally
efficient and provides an explicable accuracy with stability conditions. For these reasons, it is
commonly used as a first step in the direction of solving a many-body problem.

We discuss the following section with the fermionic antissimetry in mind. In this case,
the method consists in approximating the N-body wavefunction by one Slater determinant of
unknown single-particle wavefunctions ψi(xj)

Ψ ≈ ΨHF =
1√
N !

det {ψi(xj)}.

These unknowns are determined using an iterative approach guided by the variational princi-
ple. First, one minimises the energy functional constrained to the set subspace of wave functions
and constrained to a normalisation of the probabilities of the single-particle functions. That will
give rise to a set of nonlinear eigenvalue equations called the Hartree-Fock equations,

f̂ |ψi⟩ = ϵ |ψi⟩ (2.18)

f̂ = t̂+ ûext + ûHF .

The operator f̂ , called the Fock operator, is a one-body operator with ûHF a single-particle
potential that will be determined by the iterative method. Furthermore, t̂ represents the kinetic
energy operator and ûext the external potential energy operator. The eigenvalue problem above
gives nonlinear equations exactly because this operator depends on the eigenstates |ψi⟩ of the
other particles, and the equations are solved iteratively.

From the entire space of antisymmetric functions, there is one that satisfies E0 = ⟨Ψ| Ĥ |Ψ⟩.
Then, instead of searching for the states that satisfy this energy in the whole Hilbert space, with
HF we limit the search to the subspace of antisymmetric functions that can be expressed by
Slater determinants. The best possible solution achievable on this basis is

EHF =

N∑
i=1

⟨ψi|Ĥ|ψi⟩, (2.19)

with |ψi⟩ the eigenstates of the HF equations. We will not deduce how to arrive at the Hartree-
Fock equations, mainly because our goal is not to implement the method. We instead use it as
a theoretical guideline and benchmark.

Conceptually, the potential ûHF is a mean-field potential, and many-body interactions are
simplified to a one-particle interaction with the mean-field. By using such a mean-field pic-
ture, we neglect many-body correlations, which, depending on the system at hand, can be very
significant.

25

Chapter 2. Quantum Physics Background Full Configuration Interaction

The HF iterative process begins by approximating the electrons’ likely positions without
considering two-body interactions. This leads to an estimate of the mean-field, which is used to
update the single-particle basis, changing the probability densities. This in effect changes the
mean-field itself, in a process that is repeated until convergence. Since this process ignores higher-
order correlations, the resulting field may be weaker than if those correlations were considered.

For bosons, the ground-state wavefunction is represented as the product of individual particle
wavefunctions, assuming that all particles occupy the lowest energy state simultaneously. This
interacting system is known as a Bose-Einstein condensate. Analogous methods to those used for
fermionic HF can be applied to bosonic systems, leading to the derivation of the Gross-Pitaevskii
equations [24] rather than the Hartree-Fock equations.

2.5 Full Configuration Interaction

Other methods exist that consider linear combinations of Slater determinants, instead of
assuming only one determinant as the basis of the problem. These are the so-called post Hartree-
Fock methods, and the use of more complicated basis allows for higher-order correlations terms
at the expense of computational cost. While the Hartree-Fock method gives too coarse an
approximation, full configuration interaction (FCI) is technically an exact method. Let |Φα⟩ be
a Slater determinant, FCI consists in expanding the wave function in the basis of all possible
Slater determinants in the case of fermionic system, as follows:

|ΨFCI⟩ =
∑
α

cα |Φα⟩ . (2.20)

This expansion can then be put in the Schrödinger equation,

Ĥ

(∑
α

cα |Φα⟩
)

= E

(∑
α

cα |Φα⟩
)
,

and using the orthonormality of the basis ⟨Φγ |Φα⟩ = δγα, it follows∑
α

⟨Φγ |H |Φα⟩ cα = Ecγ .

This can once more be seen as an eigenvalue problem, where coefficients are elements of a
vector, and ⟨Φγ |H |Φα⟩ the matrix elements of the Hamiltonian in this FCI basis. Solving this
boils down to the diagonalisation of such a matrix and calculations of the integrals that yield
the matrix elements. Of course, the number of possible states being infinite forces us to reduce
our basis to a subset.

The study of truncated CI methods is concerned with different truncation choices and how
that interferes with the level of approximation. For example, given a reference determinant |Φ0⟩
(usually the HF determinant), we could restrict the determinants of Eq. 2.20 to include only
one electron excitation, in which case we have configuration interaction with singles (CIS). For
the case where two electron excitation is allowed, we have CID, and if both are allowed, you
guessed it: CISD.

Even using a truncated basis can be computationally very expensive. This is because the
number of determinants required increases factorially with the number of electrons and orbitals
[25]. Therefore, these methods are used only in modest systems with up to no more than 100
electrons.

2.6 Fermionic Systems

After presenting some theoretical background for many-body problems, we address the choice
of the systems with which we are working. Throughout this thesis, we deal with fermions in har-
monic oscillator traps up to two dimensions. These systems, in which particles are trapped, are

26

Chapter 2. Quantum Physics Background Fermionic Systems

interesting because there is a substantial number of studies to compare results to, and because
they have real-world applications. For example, trapped ions serve as qubits for recent quan-
tum computing applications [26], while ultra-cold Fermi gases allow researchers to investigate
phenomena such as superfluidity [27].

In its most general form, we can write the Hamiltonian of the systems we will consider as

Ĥ =
N∑
i

(−ℏ2
2m
∇2
i + Vext(ri)

)
+

N∑
i<j

Vint(ri, rj), (2.21)

where m is the particle mass, and ℏ is the reduced Planck’s constant. Here, Vext is an external
potential dependent on the d-dimensional coordinates of the particles, ri. Similarly, Vint defines
a two-body interaction between particles, depending on their distance. Lastly, ∇2

i is the d-
dimensional Laplacian for particle i.

Since all of our systems are confined harmonic oscillators, it is practical to use energy units
of ℏω or ℏ, and length units of trap units aho =

√
ℏ/mω. We will primarily use energy units

of ℏ, except in the fully polarised fermionic scenario, where we adopt energy units of ℏω to
ease comparison with a specific study on neural quantum states. As a consequence, we show in
Appendix A that the Hamiltonian expression can be simplified, and together with the expression
for the external interaction, follows:

Ĥ =
N∑
i

(
−1

2
∇2
i +

1

2
ω2r2i

)
+

N∑
i<j

Vint(ri, rj), (2.22)

where ri = ∥ri∥.
We have seen in Sec. 2.2.1 that the general wave function for a fermionic system can be

given in terms of the Slater determinant

Ψ−(x1,x2, . . . ,xN) =
1√
N !

det{ψi(xj)},

where we were using the composite notation xi := (ri, σi). Now, given that the expression of
the Hamiltonian Eq. 2.22 is spin-separable (in this case, spin-independent), a single-particle
wave function can be written as the tensor product of a spatial function and a spin function
ψi(xj) = ϕi(rj)⊗ χi(σj), giving

Ψ−(x1,x2, . . . ,xN) =
1√
N !

det{ϕi(rj)⊗ χi(σj)}. (2.23)

This is a very general expression in terms of spin degrees of freedom. The two fermionic
systems which we explore will each constrain the spin degrees of freedom in a different way,
leading to interesting physical study cases.

One-Dimensional Trapped Spinless Fermions

We start with a one-dimensional trapped fermionic toy model system inspired by [28] and
that has been used to test the quality of different optimisers [29]. In such a system, the fermions
are said to be fully polarised or spinless. Similarly to quantum dots systems, the Pauli exclu-
sion principle requires an antisymmetric ansatz with respect to particle position, and S-wave
interactions are therefore forbidden.

To be able to compare our results with previous works, we further use a Gaussian finite-range
two-body interaction given by

Vint(xi, xj) =
V

σ
√
2π

N∑
i<j

exp

[
−(xi − xj)2

2σ2

]
.

27

Chapter 2. Quantum Physics Background Fermionic Systems

Here, V represents the strength of the interaction and σ its range. In the limit where the range
goes to zero, the interaction becomes a contact interaction. The full N-body Hamiltonian in the
correct units for the HO can be written as

Ĥ =
N∑
i

(
−1

2
∇2
i +

1

2
x2i

)
+

V0

σ0
√
2π

N∑
i<j

exp

[
−(xi − xj)2

2σ20

]
, (2.24)

the derivation of which is given in Appendix A.
Before approaching the full interactive problem, it is useful to examine the non-interactive

eigenstates of the system, as they can be obtained analytically. Given that the Hamiltonian in
question is spin-independent, and that the spin degrees of freedom are fixed by full polarisation,
we can proceed by ignoring spin. In this scenario, each fermion occupies a single particle state
which is given by:

ϕn(x) = Cn exp

(
−x

2

2

)
Hn(x).

Here, Cn is a normalisation constant,

Cn =
1√

2nn!
√
π

and Hn(x) is the n-th Hermite polynomial

Hn(x) = (−1)n exp(x2) d
n

dxn
(
exp(x2)

)
. (2.25)

The eigenenergies for a single particle in a one-dimensional quantum harmonic oscillator,
in units of ℏω, are known to be ϵn = (n + 1/2) for any non-negative integer n. Consequently,
the ground-state energy for a system of N fully polarised fermions will be simply the sum of
the individual fermionic energies with the correct quantum number. Since anti-parallel spin
configurations are not allowed in the fully polarised scenario, each energy level is only occupied
by one particle. Consequently, the ground-state energy is given by

Egs =
N−1∑
n=0

ϵn = N2/2.

As the wavefunction antisymmetry is simply positional, and the Hamiltonian spin indepen-
dent, we can write the many-body wavefunction as the Slater determinant of Hermite polyno-
mials and a Gaussian envelope, reducing Eq. 2.23 to

Ψ−(x1, x2, . . . , xN) =
1√
N !

[
N∏
i

Ci exp

(
−x

2
i

2

)]
det{Hi(xj)},

with Ci the normalisation constant.

Two-Dimensional Quantum Dots

We now describe an analogous physical system of trapped particles, but instead of fully po-
larised fermions, we deal with fermions in a closed-shell configuration, sometimes called quantum
dots. We further consider a pure two-dimensional isotropic harmonic oscillator potential trap.

Now, instead of a Gaussian finite-range interaction potential, we deal with a repulsive
Coulomb interaction. Then, the unperturbed part of the Hamiltonian is analogous (apart for an
added dimension), while the interaction term follows

Vint(ri, rj) =
∑
i<j

1

rij
,

28

Chapter 2. Quantum Physics Background Fermionic Systems

where we use the convention rij = ∥ri − rj∥.
To solve the non-interactive problem, however, we have to consider the quantum numbers

for the added dimension. For a complete solution of the time-independent Schrödinger equation,
we refer to [30]. Given the symmetry of the problem, it can be solved independently for each
coordinate, and one generally proceeds by separation of variables. Then the spatial wave function
for one fermion in an oscillator potential in two dimensions is

ϕnx,ny(x, y) = Cnx,nyHnx(
√
ωx)Hny(

√
ωy) exp (−ω(x2 + y2)/2). (2.26)

Here, Cnx,ny is the normalisation constant and Hnx(
√
ωx) are the Hermite polynomials for

each coordinate, following Eq. 2.25, with ω the trap frequency.
Given the closed-shell configuration, we investigate a system only with an even number of

particles, where half have spin-up coordinates and the other half have spin-down. This reduces
the possible configurations of Eq. 2.23 and, as long as we are consistent, we can set the first half
of particles to have spin up and the second half to have spin down,

ψi(xj) =

{
ϕi(rj)⊗ χ↑(↑) if i ≤ N/2,
ϕi(rj)⊗ χ↓(↓) else,

(2.27)

as any χ↑(↓)(↓ (↑)) evaluates to zero due to the exclusion principle. This in turn makes the Slater
matrix of factors {ϕi(rj)⊗ χi(σj)} be block-diagonal, allowing us to write

Ψ−(x1,x2, . . . ,xN) =
1√
N !

det{ϕi(rj)⊗ χ↑(↑)}×

det{ϕk(rl)⊗ χ↓(↓)}

where 1 ≤ k, l ≤ N/2 and N/2 < k, l ≤ N . It can further be shown that the spin functions
can be completely factorised out and omitted, leaving us with a wavefunction only in terms of
positions:

Ψ−(r1, r2, . . . , rN) =
1√
N !

det{ϕi(rj)}↑ det{ϕk(rl)}↓

where we added arrows to help remember that 1 ≤ k, l ≤ N/2 and N/2 < k, l ≤ N .
The energy levels are independent for each coordinate and can be written as ϵnx,ny = ϵx+ϵy =

(nx+ny+1)ω. It becomes clear then that the energy levels are degenerate and that the important
number, called the principal number that determines the energy value is the sum n = nx + ny.
For N fermions, due to the exclusion principle, even without interaction, we have to carefully
analyse the configuration to not allow two fermions to occupy the same quantum state. In this
case, if we consider the spin degrees of freedom, it means that two fermions only assume the
same spatial quantum numbers if their spin is antiparrallel.

This gives rise to what we call magic numbers in a closed-shell configuration. This number
represents how many particles are needed to complete a closed-shell configuration, meaning that
the energy levels are filled with all particles having anti-parallel spins configurations in their
respective energy level. This number is given by the binomial coefficient

N = 2

(
n+ d
d

)
,

where d is the dimension and the pre-factor 2 comes from the two possible spin configurations
in the electronic case. For example, for a two-particle system, the ground-state closed shell
with principal number 0 can only be obtained by having both single-particle functions assuming
nx = ny = 0 but with anti-parallel spin. From Fig. 2.2 it becomes clear the reason behind the
triangular number.

29

Chapter 2. Quantum Physics Background Classical and Quantum Correlations

0

0

1

2

3

1 2 3

4

4

Figure 2.2: Illustration of the possible nx and ny configurations in order to yield a specific
principal number n which determines the final energy level. Note that to obtain the number of
electrons in the closed shell system one needs to fill the shell configurations up to the desired
principal number.

Kato’s Cusp Conditions

The Hamiltonian of a quantum mechanical system, as described by Eq. 2.21, can include
an interaction potential that may exhibit singularities. The Coulomb potential, for example,
follows an inverse proportionality to the distance between particles, expressed as 1/rij , which
diverges when the particles are arbitrarily close and rij → 0.

To ensure that physical quantities such as the energy remain well defined, the singularity
must be somehow offset by the kinetic term in the Hamiltonian. The fact that the kinetic
energy of the system is merely proportional to the Laplacian of the wavefunction implies that
the wavefunction itself must adhere to some mathematical conditions to counterbalance the
singularity in the potential.

Kato’s theorem, first presented in [31], provides a formal framework for the description of
the wave function at those interaction singularity points. More specifically, it states that Ψ must
follow

∂Ψ

∂rij

∣∣∣∣
rij=0

=
mimj

mi +mj
ZiZjΨ(rij = 0),

where Z represents charge, and m the masses of particles. As a consequence, a wave function
following such a condition must have a cusp profile, or sharpness in the particle density at the
singularities. The gradient of the wave function changes abruptly at rij = 0 in a way that
controls the divergent potential.

As will be shown in Sec. 5.1, this condition will guide our choice of a wave function in the
computational implementation. Then we will require the use of additional terms for the ansatz,
such as the Jastrow factor and the Padé-Jastrow factor.

2.7 Classical and Quantum Correlations

When discussing Monte Carlo simulations Sec. 3.3, we will talk about correlations, although
in a different sense.

30

Chapter 2. Quantum Physics Background Classical and Quantum Correlations

Statistically, there are multiple ways to measure how random variables depend on or influence
each other. This dependency is what we understand by correlation. Consider two random
variables A and B. The fact that those depend on each other can be expressed by the inequality

P (A,B) ̸= P (A)P (B).

There exist correlation coefficients to measure how strongly this inequality holds, such as the
Pearson correlation [32]. To make things explicit, there are at least three types of correlation
that we would like to distinguish. First, if we allow the particles to interact, for instance, due
to Coulomb interaction, observables such as position of one particle influence the probability
density function of the others, inducing correlation.

Second, even if identical quantum particles do not interact classically, we know that (anti-
)symmetry constraints induce correlation between states. In general, we know that ψα,β(x1, x2) ̸=
ψα(x1)ψβ(x2), and even if in this example ψ(x) is not a probability function, the argument still
holds.

Lastly, entanglement is perhaps the most explicit type of quantum correlation. Entangled
particles often have their measurement completely determined by the measurement of the en-
tangled particle. Of course, not all correlated states are entangled. A system could be a classical
mixture of factorisable pure states, in which case the joint probability densities for measure-
ments on these two subsystems are accurately described by the classical probability theory of
correlated random variables. On the other hand, entangled states can be mixtures of broader,
non-separable states.

31

Chapter 3

Computational Background

Figure 3.1: Trajectory of 15 random walkers on a lattice, inspired by [33].

3.1 Sampling and Markov Chains

Suppose that we wish to study a phenomenon in nature that is inherently stochastic and for
which we lack prior information about its probability distribution. Then, collecting information
from one single experiment is not significant. If we want to infer statistics from a set of events,
we rely on sampling.

By sampling, we mean selecting a subset of a population from which to collect information.

32

Chapter 3. Computational Background Sampling and Markov Chains

Doing so with specific statistics techniques allows us to infer information from the whole popula-
tion without measuring every instance and with a good notion of how wrong the inferred values
are. To eliminate unwanted bias in this collection process, it is common to conduct sample
selection with some level of randomness.

In this discussion, random or stochastic variables will be denoted as X and represent a
function that maps a set of outcomes Ω = {outcome A, outcome B} to a set of numbers, for
example {23, π}. To quote A. Eagle (2014) [34], one sees that a random variable is “... neither
random nor a variable”.

In the context of random variables, we will represent P as the probability measure, defined
in the sample space, while p is its probability density function. Furthermore, we represent a
conditional probability as P (X = x|Y = y), that is, a probability of random variable assuming
definite value x given the knowledge that Y has been evaluated y.

Markov Chains

A family of random variables indexed with a sequential notion {Xi} is called a stochastic
process. While this indexing could be discrete or continuous, in computer simulations we will
work with discrete-time Markov chains. Furthermore, we disclaim that this section will com-
promise mathematical rigour in favour of a short and intuitive presentation of Markov chains.
Therefore, some concepts such as irreducibility, ergodicity, and detailed balance will sometimes
be used interchangeably.

A Markov chain is a specific type of stochastic process in which the notion of the future
outcome is dependent only on the outcome of the current step, and not on the previous ones.
More specifically, if the outcome of a random variable of the stochastic process is Xi∗ = x, the
outcome of Xi∗+1 depends only on the value x, and not on any other {Xj}j<i∗ .

The way in which the Markov chain evolves is modelled by the likelihood of a transition
between two states, t(x, y), where x and y belong to S, the space of all the outcomes of the
stochastic variables. To correctly specify a Markov chain, we need an initial probability distri-
bution π0 at initial state, and the transition probabilities of the following states, meaning

P (X0 = x) = π0(x),

P (Xn+1 = xn+1|Xn = xn) = t(xn, xn+1).

Note that we did not need to specify the previous states of the chain in the conditional
probability, as per the definition of Markov chains. Sampling from this chain can be done by
first sampling X0 according to π0, and subsequently sampling Xn following t(Xn−1, ·).

It is common to associate t(x, y) to elements in a transition matrix, representing the prob-
ability transition x → y of one time step. In this case, it makes sense to see pm = P (Xn+m =
y|Xn = x) as matrix t being applied in succession. Furthermore, the probability distribution
guiding the outcome of the random variable Xn can be written

P (Xn = x) ≡ πn(x) = π0t
n.

There are several conditions that must be satisfied for our process to be a relevant Markov
chain. For example, fixed a state x, there must be transition altogether (even if to the same
state), so ∑

y∈S
t(x, y) = 1.

Another subtle point is that, since we study these chains for long-time evolutions, we want
stochastic processes with “nice” asymptotic behaviour. For that to be possible, some require-
ments must be satisfied. First, we do not care about chains that go to subsets of the state space

33

Chapter 3. Computational Background Markov Chain Monte Carlo

and never return. That would cause the isolation of the chain in a way that leads to a divergence
in statistical quantities. More specifically, we say we want to study irreducible chains: chains
for which any state can be reached in some finite number of steps.

Looking at the other extreme case, we also do not want to study periodic chains, for a
similar problem of lack of convergence to a stationary distribution. These conditions are usually
condensed into the requirement that the Markov chain satisfies a so-called detailed balance
condition, formulated as follows: ∀x, y ∈ S × S,

π(x)t(x, y) = π(y)t(y, x). (3.1)

That means that when the distribution has reached a steady distribution, the proportion
of transitions from state x to y is the same as from y to x. Given detailed balance, we can
invoke two convergence theorems for finite-state Markov chains. The first one, with respect to
the convergence of the distributions, and the other one with respect to the expected values of
functions of the random variables. Those are the expected values we seek to sample.

First, if we have t(x, y) the transition matrix of irreducible, aperiodic finite state Markov
chains, ∀x, y ∈ S × S, any initial distribution π0 will lead to πn which converges to a stationary
π, and we write

lim
n→∞

tn(x, y) = π(y). (3.2)

Furthermore, for that stationary π and considering f(x) any function on the state space, for
any initial π0 it follows

P

(
lim
n→∞

1

n

n∑
k=1

f(Xk) =
∑
x

f(x)π(x)

)
= 1. (3.3)

This means that the expected value of f , which depends on the random variable, when
sampled towards infinity, will tend to ever better approximate the true expected value of f .
This theorem is crucial for Markov chain Monte Carlo, and it leads us into the topic of Monte
Carlo methods.

3.2 Markov Chain Monte Carlo

Monte Carlo Methods

Monte Carlo (MC) methods are a very broad class of computational methods that use sam-
pling to generate numerical results. These methods are used in scenarios where traditional
computational approaches are impractical, making it more feasible to tackle the problem by
introducing randomness and depending on the law of large numbers for approximate solutions.
First seen as a “last resort”, MC is now considered a robust approach, present extensively in
scientific computing [35].

Monte Carlo methods can be used to solve both probabilistic and deterministic problems.
A probabilistic example would be risk assessment simulations, while a deterministic example
would be calculations of intractable integrals. We will use Monte Carlo methods in two very
intertwined contexts: for the evaluation of high-dimensional integrals and for sampling quantities
that follow complicated or unknown probability distributions via Markov chains.

This sampling process for Monte Carlo methods is stochastic and the information obtained
about the data is an inferred probability distribution with an associated random error. Despite
this randomness in the estimation, the uncertainty range can be arbitrarily reduced, given the
sufficient computational time, as eluded to in Eq. 3.2 and Eq. 3.3.

To demonstrate this, let us explore the approximation of an integral using Monte Carlo
sampling. Suppose that we want to compute the integral of a function f(x), over Ω ⊂ Rd, which

34

Chapter 3. Computational Background Markov Chain Monte Carlo

has volume V. The naive MC approach is to sample uniformly n points, xi of Ω to compute
the fraction of these samples that is evaluated below f(Ω). Of course, the probability of this
happening must be proportional to the magnitude of f(xi) and, consequently, to the integral
value. Mathematically, this approximation boils down to∫

Ω
f(x) dx ≈ V 1

n

n∑
i=1

f(xi). (3.4)

A Comment on Random Number Generation

The generation of truly random numbers in computer programmes is not feasible. What
we do instead is generate apparently uncorrelated numbers with deterministic algorithms called
pseudo-random number generators (PRNGs). Given a known initial state determined by a
number X0 which we call a seed, the algorithm can replicate a whole sequence Xn of appar-
ently random numbers. There are a myriad of PRNGs, with significant differences in terms of
randomness quality, speed, cycle, and other characteristics.

For a true uniform random variable, the generated numbers should be completely uncor-
related, and, in PRNGs, we try to avoid correlations between generated numbers as much as
possible. However, since their number generation is deterministic, some level of correlation is
inevitable, even if subtle.

In computer simulations, where random numbers are generated millions of times, a fast
algorithm is absolutely essential. For illustration, we mention a well-known and reasonably fast
algorithm: the Linear Congruential Generator (LCG). An LCG is defined by the recurrence
relation

Xn+1 = (aXn + c) mod m,

where the choice of m, a, and c determines the specific generator and how long of a sequence
of pseudo-random numbers will be before starting to repeat. The length of such a sequence is
called the cycle, and modern PRNGs have cycles of around 2128 numbers.

Although PRNGs typically generate numbers uniformly between 0 and 1, there are techniques
to enable these generators to produce numbers following specific, well-known distributions, such
as the Gaussian distribution. Among these methods are the reverse transform method, rejec-
tion sampling, and transformation techniques such as the Box-Muller method. Ideally, when
one wants to generate random samples following a specific low-dimensional distribution, these
methods are excellent choices. Unfortunately, in higher dimensions, these become extremely in-
efficient, motivating the search for other algorithms. To illustrate this, we briefly introduce the
rejection sampling method. Although we do not explicitly use it, it is a perfect bridge between
Monte Carlo integration and Markov chain Monte Carlo.

Rejection Sampling and Curse of Dimensionality

The idea of rejection sampling is to use a distribution from which we know how to sample,
g(x), to guide the sampling process and mimic the sampling of the distribution we desire, p(x).
This will work as long as g is an envelope for p. More specifically, we need p(x) < Kg(x) for
some scaling constant K > 1 and at any point in the function’s domain. The iterative sampling
process then follows three steps, which can be better understood with Fig. 3.2.

• Sample a point x from an envelope proposal distribution g(x);

• Sample y form the uniform U(0,Kg(x));

• Accept and keep track only of samples for which y < p(x).

35

Chapter 3. Computational Background Markov Chain Monte Carlo

−3 −2 −1 0 1 2 3

X values

0.0

0.1

0.2

0.3

0.4

0.5

P
r
o
b
a
b
i
l
i
t
y

Reject

Accept

Target

Envelope

Figure 3.2: Illustration of rejection sampling with an envelope and target distributions. Proba-
bilities are not normalized.

With that, the normalised histogram that forms from the accepted samples tends to ap-
proximate the target distribution, indicating that the accepted samples indeed follow p. The
problem with such a procedure, which is hard to see in low-dimensional examples, is that the
rate of convergence for the approximation becomes slow in higher dimensions. The sampling is
inefficient. In fact, the volume of rejected samples will increase at a much faster rate than that
of the accepted ones, requiring a number of samples that is impractical. This is a consequence
of the curse of dimensionality.

Markov Chain Monte Carlo

To finally connect the concept of Monte Carlo integration with Markov chains, we can ask
ourselves what would happen if, in Eq. 3.4, we sampled domain points using a general probability
distribution p instead of a uniform one. Recall that the expected value of a sample of x following
a probability distribution p is denoted

Ex∼p[f(X)] =

∫
f(x)p(x)dx,

where we omit the domain for simplicity. If we compute the expected value of a function
evaluated on domain points sampled following p we solve a related but not exactly the same
problem as the pure integral calculation of f . This expectation value can be approximated by
the average of the samples,

Ex∼p[f(x)] ≈ Êx∼p[f(x)] =
1

n

n∑
i

f(xi).

As the number of samples n increases, under the law of large numbers for Markov chains,
this approximation will improve arbitrarily. Still, the question of how to generate samples from
p with Markov chains remains. As discussed in Sec. 3.1, we require a Markov chain for which the
stationary distribution is the one we want to sample from. In fact, there are different possible
ways to do that, with maybe the two most common being the Metropolis and Gibbs algorithms.

36

Chapter 3. Computational Background Markov Chain Monte Carlo

Figure 3.3: Illustration of using a prior distribution sampling to obtain samples from a posterior
distribution by accepting and rejecting moves from an initial position x0. Adapted from Lee et
al., 2015 [36]

3.2.1 Metropolis Algorithm

Initially described in [37], the Metropolis algorithm serves as one method to generate a
Markov chain to sample from, aiming to achieve a steady distribution that matches the target
distribution. So far, we have not addressed how to get the correct transition probabilities t(x, y)
required from Eq. 3.2. The idea of Metropolis algorithm is to model a transition in state space
via two independent probabilities. First, the transition state y must be available, modelled by
a proposal distribution g(x, y). Moreover, there is a probability that y is accepted a(x, y) from
the current state x. The fact that these are assumed independent means we can rewrite the
detailed balance condition of Eq. 3.1 as

π(x)a(x, y)g(x, y) = π(y)a(y, x)g(y, x),

or, rearanging,

a(x, y)

a(y, x)
=
π(y)

π(x)

g(y, x)

g(x, y)
. (3.5)

Note that g is something that we control and could be, for example, a normal distribution
centred around the current state. Furthermore, it plays a similar role to the envelope distribution
in rejection sampling. Satisfying Eq. 3.5 above is equivalent to having an acceptance rule of

a(x, y) = min

(
1,
π(y)

π(x)

g(y, x)

g(x, y)

)
. (3.6)

In other words, if we use such an acceptance rule with a proposal distribution that we
control, we are still satisfying detailed balance. In this case, the sampled values will converge to
the sampled values under the desired stationary probabilities. If we use a symmetric proposal
distribution g such as a normal distribution, Eq. 3.6 further simplifies, given that the fraction of
proposed probabilities will be one. Under this simplification, the Metropolis–Hastings algorithm
is simply called Metropolis, but more often than not the names are used interchangeably.

A final comment on the Metropolis-Hastings algorithm is that, due to the fraction between
π(y) and π(x), it allows us to sample quantities from π(y) with any proportional probability
distribution f(x) ∝ π(x).

37

Chapter 3. Computational Background Variational Monte Carlo

Sec. 3.3 includes an algorithmic recipe with algorithm box 1, although fitted to our varia-
tional Monte Carlo framework. In addition, Fig. 3.3 illustrates the general idea of proposing
steps from an initial state x0 and accepting or rejecting them to generate a posterior distribution.

Joining the Dots

This last comment about allowing for a function f ∝ π can seem irrelevant but allows us
to sample from distributions for which we lack knowledge of partition functions. In our
case, it allows us to use an unnormalized ansatz in variational Monte Carlo.

3.3 Variational Monte Carlo

As discussed in Sec. 2.6, we are deeply interested in solving the Hamiltonian eigenvalue
problem. More specifically, we are focused on the smallest eigenvalue and its eigenstate. We
now see a way to approach this problem via Markov chain Monte Carlo, avoiding explicitly
solving the Schrödinger equation.

By the variational principle, discussed in Sec. 2.2.5, any trial wave function yields and ex-
pectation value for the energy that is bounded from below by the true ground-state energy of the
system. With that in mind, variational Monte Carlo (VMC) is a method that iteratively samples
energy values from a parameterised trial wave function |ΨT (θ)⟩ and updates its parameters θ
to drive the sampled energies to a minimum. VMC is heavily biased by the functional choice
for the trial function, and finding a good initial guess can be extremely difficult. It is therefore
an approximate method with potentially large error bars.

Despite these challenges, VMC remains easy to implement in comparison to other more
precise methods, such as diffusion Monte Carlo, while also avoiding the infamous sign problem
[38]. The idea behind VMC is to note that, by using a trial wave function ΨT , one can express
the expected value for any observable O on a complete basis {|α⟩} as

⟨ΨT |Ô|ΨT ⟩
⟨ΨT |ΨT ⟩

=
∑
α,β

⟨ΨT |α⟩⟨α|Ô|β⟩⟨β|ΨT ⟩
⟨ΨT |ΨT ⟩

(3.7)

=
∑
α

⟨ΨT |α⟩⟨α|ΨT ⟩
⟨ΨT |ΨT ⟩

∑
β

⟨α|Ô|β⟩ ⟨β|ΨT ⟩
⟨ΨT |α⟩

(3.8)

=
∑
α

P (α)
∑
β

OL(β). (3.9)

The first term in the summation represents the normalised probability of the state P (α),
while the second term can be interpreted as a local operator estimator OL. This allows us to
approximate the expectation value on the left-hand side of Eq. 3.9 as the average of sampled
values of the observable associated with the local operator. To better illustrate this, let us express
the trial wave function as Ψθ(R) and deal with the Hamiltonian operator. This representation
indicates a wave function parameterised by θ with R a collective variable of all positions of a
multi-particle system. In this case, the VMC energy follows

E(θ) =
⟨Ψθ(R)|Ĥ|Ψθ(R)⟩
⟨Ψθ(R)|Ψθ(R)⟩ =

∫
EL(R)p(R,θ) dR = ⟨EL⟩R∼p(·,θ), (3.10)

where we have introduced the concept of a local energy EL,

EL =
ĤΨθ(R)

Ψθ(R)
, (3.11)

38

Chapter 3. Computational Background Variational Monte Carlo

and the probability density function pθ(R),

pθ(R) =
|Ψθ(R)|2∫
|Ψθ(R)|2 dR . (3.12)

This allows us to use Markov chain Monte Carlo to approximate the high-dimensional integral
in Eq. 3.10: ∫

EL(R)pθ(R) dR ≈ 1

n

∑
R∈Rn∼pθ(·)

EL(R), (3.13)

where n denotes the number of samples Rn in a Markov chain framework. To see why this
approximation is necessary, let us disregard spin degrees of freedom and try to compute the
integral

⟨H⟩ =
∫
dR1dR2 . . . dRNψ

∗Hψ∫
dR1dR2 . . . dRNψ∗ψ

.

As detailed in [39], evaluating this integral via Gaussian quadrature with 10 particles and
10 mesh points for each degree of freedom would take around 1018 seconds, or ten billion years.
This calculation considers 1030 floating point operations in three dimensions, assuming that the
calculations are performed on an ideal computer, which is totally impractical.

For an illustration on how to proceed with the calculation of the local energy of Eq. 3.11, we
can break down the Hamiltonian in terms of kinetic and potential energy. The potential term
will depend on the system (external potential trap and particle particle interaction), but the
local kinetic term can be written,

K̂ = −1

2

∇2Ψθ

Ψθ
.

For stability reasons, it is common, when dealing with VMC, to work with the wave function
in the logarithmic domain [4]. This approach helps especially with convergence stability, as the
trial function can assume very small or very large values. The sign of the wavefunction must be
kept, of course, if one wishes to retrieve the wavefunction expression and not just the probability
distribution. In this case, the kinetic term follows

K̂ = −1

2

N∑
i=1

[(
∂ ln |Ψθ(R)|

∂Ri

)2

+
∂2 ln |Ψθ(R)|

∂R2
i

]
,

with N the number of particles and Ri refering to the vector coordinates of particle i. The
derivation of this expression is available in Appendix B.

The minimisation of the expectation value for the local energy can be achieved using a
gradient descent optimisation approach, which will be further detailed in Sec. 4.2. In its simplest
form, the iterative update of parameters can be represented as

θ(t+1) = θ(t) −∇θE(θ), (3.14)

with t the iteration index. A caveat here is that we are taking a derivative of the expectation
value, which follows, dropping the T subscript for simplicity:

∇θE(θ) =

∫
dR (∇θΨ

∗)HΨ+Ψ∗H(∇θΨ)∫
dRΨ∗Ψ

−
(∫
dRΨ∗HΨ

)
∇θ

(∫
dRΨ∗Ψ

)(∫
dRΨ∗Ψ

)2 .

39

Chapter 3. Computational Background Variational Monte Carlo

If we let N =
∫
dRΨ∗Ψ for simplicity and considering the wavefunction assumes only real

values, it follows

∇θN = 2

∫
dRΨ∇θΨ

and

∇θE(θ) =

∫
dR (∇θΨ)HΨ+ΨH(∇θΨ)

N − 2 ⟨EL⟩
〈
Ψ−1∇θΨ

〉
= 2

(〈
EL ·Ψ−1∇θΨ

〉
− ⟨EL⟩

〈
Ψ−1∇θΨ

〉)
,

which is also equivalent to, and more often seen as

∇θE(θ) = 2ER∼|Ψθ |2 [(EL − E(θ))∇θ log |Ψθ(R)|] . (3.15)

The real-valued wave function assumption in this derivation is reasonable in sight of our
computational implementation: We will be dealing only with stationary states and bounded
systems.

3.3.1 Metropolis Algorithm and VMC

With this rewriting, we move the difficulty of the problem from a high-dimensional integral
to sampling from a distribution over the position space RNd, where N is the number of particles
and d the number of dimensions of the system. Then, a sequential Monte Carlo Markov chain
proposal of steps is denoted R(i) → R(i+1) so that it depends only on the previous state at
position R(i). Whether the new point R(i+1) should be accepted is evaluated according to an
acceptance rule, such as Eq. 3.6 for the Metropolis scheme.

Given that R(i+1) represents the coordinates of all particles, we propose new positions by
moving either all particles at the same time or one at a time. Both Metropolis and the (to
be discussed) Langevin Metropolis-Hastings require some proposal rule, which we write as µ =
µ(σ1, τ 1) ∈ Rd, where σ1 are system-dependent parameters (such as R,ΨT (R)) and τ 1 are
method-specific parameters. In addition, we define a metric ν = ν(σ2, τ 2) used in the evaluation
for the acceptance or rejection of the proposed points.

In the Metropolis algorithm, ν is compared to a random number drawn from a continuous
uniform distribution r ∼ Uc(0, 1). Should ν be larger than this number, the step is accepted.
Otherwise, the configuration R remains the same. There is also a need to initialise the particle
positions, which greatly affects the convergence of the sampling. We will note this by the function
λ, based on drawing positions following a probability distribution. In case we choose to move
one particle at a time, the general movement of R in the state space S can be seen in Algorithm
1. To better see how this extends in the whole context of variational parameter training, we
refer to the Algorithm 3.

40

Chapter 3. Computational Background Variational Monte Carlo

Algorithm 1 Procedure to determine n configurations in S. Uc and Ud are continuous and
discrete uniform probability distributions respectively. Here, we move one particle at a time.

Initialize all particle positions R(1) ← λ
for i = 1, 2, . . . , n do

Draw a random particle index p ∼ Ud[1, N]

Calculate new particle position R′
p ← R

(i)
p + µ

Calculate metric w ← ν(R′,R(i))
Draw uniform number r ∼ Uc(0, 1)
if w ≥ r then

Accept new position: R
(i+1)
p ← R

(i)
p

end if
end for

In the Metropolis algorithm, the normalisation constant of the probability density function
in Eq. 3.12 will cancel when calculating the acceptance rule. More specifically, for the trial
wave function of the quantum mechanical system of interest, the ratio of the trial step R→ R′

follows

νM (R,R′) =
p(R′)
p(R)

=
|ΨT (R

′)|2
|ΨT (R)|2 , (3.16)

which leads to the acceptance rule

a(R,R′) = min
(
1, νM (R,R′)

)
. (3.17)

If a proposed step moves towards a higher probability density, νM > 1, and we always accept
the step. In addition, to adequately sample from the probability distribution, some steps towards
lower density regions must also be accepted. To test whether this should be the case, we also
compare νM with r ∼ Uc(0, 1) (as can be seen in Algorithm 1). If each particle is allowed to move
a step length of δ in each dimension for each iteration, using a continuous uniform distribution,
the proposal rule can be written as

µ(δ) =

D∑
i=1

diδêxi , di ∼ Uc(−1, 1), (3.18)

where êxi are single particle unit vectors. If δ is too small, only small changes of R will be
allowed between iterations, and the probability density ratio Eq. 3.16 will often be close to
one, in which case νM > r will be true for almost every step and almost every proposal will be
accepted. Too high of an acceptance rate results in sample means that slowly converge to the
population mean. On the other hand, if δ is too large, the proposed step R′ is likely to land in a
low-density region of p, with most steps being rejected, little movement in S and many repeated
samples.

Hence, it is crucial to identify a value of δ that ensures a balanced ratio of accepted to rejected
steps. This proportion, commonly known as the acceptance rate Ar, is generally associated with
reliable results when it is approximately 0.5 [40].

The steps proposed by the Metropolis algorithm are in some sense naive since the pro-
posal step R′ uses no information on the probability distribution, but only on the probability
at individual points by evaluating νM . This, once more, can lead to inefficient sampling in
high-dimensional spaces and motivates the Langevin Metropolis importance sampling, to be
introduced in Sec. 3.4.1.

41

Chapter 3. Computational Background Diffusion Monte Carlo

3.4 Diffusion Monte Carlo

Diffusion Monte Carlo (DMC) is a well-established method for employing Monte Carlo sam-
pling and diffusion theory to computationally determine the ground-state energies in quantum
systems. Although we do not use the method directly, we discuss it for two reasons. First, it is
recognised for providing potentially exact results, which we use to benchmark our calculations.
Moreover, DMC has been shown to require an importance sampling approach to the Metropolis
algorithm [41]. This approach, which guides the sampling distribution of the proposal steps,
is also used by us in our VMC calculations. Our DMC discussion is conceptual, and a more
in-depth treatment can be found in [42, 43]

The DMC method is motivated by looking at the time-dependent Schrödinger equation
of Eq. 2.2 under imaginary time evolution. This means that we replace it → τ , and the
solution described on an enumerable eigenbasis |ϕi⟩, ordered according to the ascending order
of eigenvalues can be written

|Ψ(τ)⟩ = e−Ĥτ |Ψ(0)⟩

=
∑
i

e−Eiτ ci |ϕi⟩ = c0e
−E0τ

[∑
i

ci
c0
e−(Ei−E0)τ |ϕi⟩

]
.

This can be understood as an operator exp(−Ĥτ) that acts so that other states decay
exponentially to the ground-state. The closer Ei is to E0, the slower the decay rate. In practice,
this time evolution is often unstable, and it is standard to shift the energy scale towards a trial
value ET , for example the energy of the non-interacting ground-state problem. Then, in the limit
of long time evolution, the excited parts of the general state get projected to the ground-state,
either by decaying, if Ei − ET > 0 or by amplification, in case EL − ET < 0:

|Ψ(τ →∞)⟩ → c0e
−E0τ |ϕ0⟩ .

Under this lens, DMC models the evolution in imaginary time as a generalised diffusion
process, where energy terms act as either sources or sinks. Initially conceptualised by E. Fermi
in the 1940s, this scenario is described through random walkers experiencing birth-or-death
processes.

The operator responsible for the diffusion evolution, which is now shifted by ET is the
Greens’s function,

Ĝ(τ) = e−(Ĥ−ET)τ .

After appropriate basis transformations necessary for us to solve the problem computation-
ally, it is possible to write the Green’s function in such a representation that yields

Ψ(R, t+ τ) =

∫
G(R,R′, τ)Ψ(R′, t+ τ)dR′.

Furthermore, under what is called the short-time approximation for the Green’s function,
one is able to approximate G as a product of a diffusion part, Gd, and a branching part Gb, with
Gd attributed to the kinectic energy and Gb to the potential energy.

G(R,R′, τ) ≈ Gd(R,R′, τ)Gb(R,R
′, τ) (3.19)

We now provide a brief description of how the rest of a naive DMC algorithm would be carried
out. For each iteration, the branching part Gb is used to evaluate whether walkers should be
created or destroyed from the sampling procedure. Then, the walkers positions are allowed to
move following the diffusion due to Gd. The specifics of the branching process and subsequent
data collection are not covered in this discussion. Nevertheless, we explore further the diffusion
process as it provides inspiration for our VMC implementation.

42

Chapter 3. Computational Background Diffusion Monte Carlo

The diffusion Green’s function must satisfy the diffusion equation:

∂Gd(R,R
′, τ)

∂τ
= −D∇2

RGd(R,R
′, τ), (3.20)

in which case the solution is

Gd(R
′,R,∆t) =

exp
(
− (R′−R)2

4D∆t

)
(4πD∆t)3N/2

, (3.21)

with D a diffusion constant and ∆t a free parameter time step. In the quantum mechanical
case, D = ℏ2/2m or, in natural units, simply D = 1/2. If no importance sampling algorithm is
used, such distribution can be sampled by making walkers move similarly to standard metropolis
algorithm with a proposal

R′ = R+ η
√
2D∆t,

with η such that for each particle, η is a d-dimensional Gaussian. Then, the acceptance criteria
follows

a(R,R′) = min

(
1,
G(R′,R,∆t)
G(R,R′,∆t)

νM

)
,

with νM the metropolis metric. However, as already mentioned, DMC requires a more guided
sampling process, which we introduce now.

3.4.1 Langevin Metropolis Importance Sampling

Often in quantum-mechanical simulations, the probability distribution to be inferred from
sampling can be somewhat localised. Then, a significant portion of the stochastic integration
steps gets wasted in regions that are not representative of the target distribution. More critically,
unguided Monte Carlo sampling leads DMC walkers towards regions of infinite potential and
unstable results.

The Langevin Metropolis importance sampling method aims at guiding the acceptance prob-
ability to the target distribution of the trial wave function. This is done by introducing a quan-
tum force or drift force, as explained in depth in [44]. Under the action of a drift force, F, the
evolution of a probability distribution P (R, t) can be modelled by the Fokker-Planck equation:

∂P (R, t)

∂t
= D∇ [(∇− F(R))P (R, t)] . (3.22)

The relation between F and P can be further investigated under some assumptions. It can be
shown [45] that since the force must act in the orthogonal direction of the diffusion, and given
that in the stationary state, the left-hand side of Eq. 3.22 must be zero, the quantum force can
be expressed as F = P−1∇P . In this case, for a particle k at position Rk,

F(Rk) =
2∇Ψ(Rk)

Ψ(Rk)
.

Invoking now the Langevin equation [46], which tells us how a stochastic variable can evolve
under the time evolution of the distribution, a proposal R′ = R+ µ is given by

µ(R,∆t) = DF(R)∆t+ ξ
√
∆t, (3.23)

with ξ following a d-dimensional Gaussian distribution and ∆t follows the similar role as the step-
length in regular Metropolis. The importance sampling algorithm then expresses the distribution

43

Chapter 3. Computational Background Diffusion Monte Carlo

g in the acceptance rule of Eq. 3.6 as the solution for the Fokker-Planck equation, which is the
Green’s function

Gd(R
′,R,∆t) =

exp
(
− (R′−R−D∆tF(R))2

4D∆t

)
(4πD∆t)3N/2

, (3.24)

which corresponds precisely to the diffusion component of the Green’s function in the DMC
context, Gd, now incorporating a drift term. If we are using a VMC algorithm instead of DMC,
there is by definition no branching part of the general Green’s function. In that case, we can
express the modified acceptance criteria of this method as

a(R,R′) = min
(
1, νLMH(R,R

′)
)
,

νLMH =
Gd(R

′,R,∆t)
Gd(R,R′,∆t)

νM . (3.25)

In words, the importance sampling guidance works by adjusting the acceptance probability
such that the metric of Eq. 3.16 is multiplied by the fraction of two Green’s functions that
model the transition probability between state R′ → R of a probability distribution evolving
due to a diffusion and a quantum force. In contrast to Metropolis, this algorithm adds, both in
Eq. 3.24 and Eq. 3.23, physical information about the trial wave function, indicating at least
in theory a more robust method.

A Comment on DMC

One of the advantages of DMC over VMC is that, in VMC, occasional excited states can
contribute to the minimised energy via local minima, whereas in DMC calculations, excited
states exponentially decay to the ground-state in the imaginary time evolution.

Despite being extremely precise, DMC also presents a couple of drawbacks. First, there is the
constant problem of computational cost. For bosonic systems, DMC scales polynomially with
the system size, but for fermionic systems, the scaling is exponential. Furthermore, and perhaps
more important, is the fermionic sign problem: DMC can only be performed assuming wave
functions that are positive at any evaluated point. Although techniques are used to circumvent
this, such as the fixed node approximation [47], they all bias the samples in some way.

44

Chapter 4

Machine Learning Background

Figure 4.1: A gradient descent trajectory failing to optimise to global minima on the Eggholder
function.

The name machine learning, combined with its current overuse, can sometimes be misleading.
Machine learning methods need no modern machines as we know them today. Given a pen,
paper, and enough time, anyone can do machine learning. More precisely, what these methods
do need is a computational machine - be it a human or a modern computer. Of course, the
computer here would have an advantage in terms of automation and floating-point operations
per second, and that is why we use them.

We will often refer to machine learning as statistical learning, as this name is more informative
and helps to reduce some mysticism around the field.

45

Chapter 4. Machine Learning Background Statistical Learning

4.1 Statistical Learning

Statistical learning involves utilising statistics to extract knowledge from data. We therefore
must clarify the meaning of data and learning in this context. First, there are various types
of learning, typically categorised into supervised, unsupervised, and reinforcement learning. In
supervised learning, the aim is to create a model that takes labelled examples as input and
predicts outputs. The goal of unsupervised learning is to identify patterns or structures within
the data, without explicit labels in the inputs. Lastly, reinforcement learning is distinct in that
an agent makes decisions and interacts with an environment to obtain rewards based on its
actions.

Consider a function f : X → Y , where X is a set of possible inputs with Y the set of all
possible outputs. Here, data refers to subsets or sample vectors xi and yi from the respective
sets, which makes {xi, yi} ∈ X × Y . Learning, then, is the process of creating a model f̂(xi)
that model f up to some error ϵ,

f̂(xi) = yi + ϵi.

The error, or noise term, is a deviation of the model prediction from the actual output, and
can occur from inherent fluctuations of the dataset or limitations of the model itself. In the case
of an idealised model f̂ , we assume that ϵ follows a normal distribution N , which is motivated
by the law of large numbers.

Training a model involves searching for a model which minimises this error as much as
possible. We are, however, free to choose how this error is measured, and, as we will discuss,
that will greatly influence the minimisation search. For now, let us simply state that such a
function, which represents a distance between the model’s prediction and ground truth, should
map to a real number. We will call it a loss function L : H → R, with H a set of all possible
functions from input to output space1. For now, we simply write

L(f,D) ∝
∑

(xi,yi)∈D
d(f(xi), yi), (4.1)

where D ⊂ X × Y , and d a measure of the distance of the individual predictions to the truth.
For now, it suffices to state that it will be a convex function such as the mean squared error.

4.1.1 Learning as An Optimisation Problem

To quote Bennett [48], “Optimization problems lie at the heart of most machine learning
approaches”. On that note, the objective of our learning is to find a function that, given a data
set D = {(xi, yi)} from a hypotesis space H, minimises L. In mathematical terms, the problem
becomes

min
f∈H
L(f,D). (4.2)

However, this is only part of the problem. In statistical learning, we want models capable of
generalising to unseen data. We want models to learn general features of datasets, rather than
hyper-specialising on a specific one. This discussion is central to supervised learning and is deeply
related to the concept of bias-variance trade-off, better discussed in [49]. This specialisation
process usually comes with an increase in complexity of the model, which leads to a higher
variance, albeit smaller bias in the prediction values. To better estimate that, one usually
breaks the data set into a training and testing set. Here we deliberately avoid that discussion
as this technique is not used in our methods.

1Note that this is not just any function, as the type of model adds constraints: it could be linear model,
neural network, and so on.

46

Chapter 4. Machine Learning Background Gradient-based Optimisation

4.2 Gradient-Based Optimisation

There are several ways to approach optimisation problems, such as the one described in
Section 4.1.1. The technique of choice depends on the nature of the problem at hand, but
perhaps the most famous is gradient-based optimisation. For a large class of problems, many
functions we want to minimise - or maximise - are based on physically or statistically reasonable
functions. For that reason, they are frequently well behaved in the differential calculus sense. If
a specific loss function is sufficiently smooth2, and has an extrema (minimum or maximum) at
some point in the domain, we know ∇L = 0.

Note how the domain of L is a very general vector space of functions. To make the differ-
entiation process more intuitive, we parameterise a model fθ : X → Y . This means that after
fixing a functional form, we can explore the hypothesis space by changing the parameters θ, and
so the optimisation quest becomes

θ̂ = argmin
θ
L(fθ,D). (4.3)

Steepest Descent

The idea behind steepest descent (SD) is to iteratively update θ in a direction that minimises
L and to do so using the gradient of the loss with respect to the parameters. The motivation is
simple: this gradient should be related to the direction in which L decreases the most for the
smallest displacement δθ = θt+1−θt. The word “related” carries a significant conceptual weight
here, especially because we have not defined how to measure such displacement. For now, we
shall use the Euclidean norm, in which case we write

d (θt+1 , θt) = ∥δθ∥2 .
Our wordy motivation for steepest descent can then be written mathematically if we first

take a first order approximation of L around θt:

L(θ) ≈ L(θt) + δ⊤θ ∇L(θt). (4.4)

Performing an iterative minimisation with the smallest possible step can be posed as a
constraint minimisation problem. If we set the distance to an arbitrary but fixed scalar,
d (θt+1 , θt) = ϵ, the quest for the optimal parameter can be written

θt+1 = argmin
θ

[
L(θt) + δ⊤θ ∇L(θt) + ϵ

]
. (4.5)

We have constrained the minimization of L to a function d, which can be solved via Lagrange
multipliers (see Appendix C), yielding

θt+1 = θt − α∇L(θt). (4.6)

The parameter α, called the learning rate, is a scaling factor from the Euclidian distance,
together with the displacement constraint ϵ. In real-life applications, we often choose such a
parameter experimentally. Using too big of a learning rate will mean that the constraint has
not been satisfied, and steps are taken outside of the trust region which guarantees the linear
approximation of the method.

Steepest descent has some pitfalls. First, all directions in parameter space are treated equally,
in terms of scale, by the fixed learning rate. Depending on the parametrisation of our cost
function, this might be a terrible assumption. Second, the learning rate is fixed; then, a large
learning rate might make it impossible to reach convergence. Note that employing an extremely
small learning rate is not practical either, as it would require more iterations to reach convergence
and inevitably more computational time. Hereafter we will discuss some of the techniques to
try and address these points.

2has well deffined derivatives up to some order k over some domain D.

47

Chapter 4. Machine Learning Background Gradient-based Optimisation

Newton’s Method

The most immediate way to address the problem of equal treatment of the parameter scale
is to use a higher-order Taylor expansion in Eq. 4.4. This is the essence of Newton’s method.
In this case, the update rule guided by the minimisation is expressed as

θt+1 = argmin
θ

[
L(θt) + δ⊤θ ∇L(θt) +

1

2
δ⊤θ H(θt)δθ + ϵ

]
, (4.7)

for which the update rule becomes

θt+1 = θt − αH−1(θt)∇L(θt) (4.8)

H(θt) = ∇2L(θt) (4.9)

where H is the so-called Hessian matrix.
Newton’s method improves the step towards the direction of the negative gradient of the

loss function by adding information of the curvature of the objective function L via the Hessian
matrix. While several of the theoretical arguments behind both SD and Newton’s method are
tailored to convergence in a convex landscape, they can be used in non-convex problems with
some caution and techniques.

Convex functions are characterised by the property that the line segment connecting any
two points on the function’s graph always remains above the graph itself. A classical example
being a parabola, optimisation on those functions is straightforward, as any local minima are
also global minima. In contrast, non-convex functions do not have this guarantee, due to the
potential presence of several local-minima or saddle points. In the latter class of functions,
having bad initialisation points can in the worst scenario lead to divergence in the algorithm or
lead to convergence to local minima.

At this point, one might ask why not always use Newton’s method. As for most computa-
tional problems, the answer is both storage and computational efficiency. The Hessian matrix
is quadratic in number of parameters and has to be updated and stored for every iteration
of the training process. Calculating the elements of the matrix is also expensive, since it in-
volves the double derivatives of the objective function, and finally, inverting a matrix also has
approximately cubic complexity.

Momentum Gradient Descent

The steepest descent method of Subsection 4.2 with update rule given by Eq. 4.6, can be
rewritten as

δt = α∇θL,
θt+1 = θt − δt.

A simple improvement in this method is the addition of a moment term γ ∈ (0, 1). This
parameter controls the maintenance of some information, or memory, about the convergence
behaviour of the parameter update in previous epochs. The analogy arises as the moment of
a particle increases, while its potential energy on a downward trajectory is minimised. The
intuitive argument for this analogy is that, by having moment, such a particle traversing a
landscape is able to overcome potential local minima or move ever so fast when in regions with
a steady downhill trajectory. Following this reasoning, the algorithm follows

δt = γδt−1 + α∇θL,
θt+1 = θt − δt.

This is an exponentially weighted average of displacements along the epochs, with the mo-
ment term γ controlling how much to remember from the previous iterations. This constant is

48

Chapter 4. Machine Learning Background Gradient-based Optimisation

therefore a number between 0 and 1, to be fine-tuned experimentally. Note that this memory
term invariably contains some information about the curvature of the landscape, while still being
part of a first-order method.

Root Mean Squared Propagation (RMSprop)

We have mentioned that a constant learning rate can affect the convergence of the training.
We now present two examples among the class of adaptative learning rate methods that attempt
to address this problem.

To avoid the computational cost of taking the second derivative of the loss function, RMSProp
[50] aims at correlating this information with the moving average on the squared gradient of
each parameter, represented here as st, and modulated by a decay rate β. This method assigns
individual effective learning rates for each parameter and also modulates them by a decay rate.
This makes the algorithm move fast in the beginning (large learning rate) when we are probably
distant from the minima, and then proceed with caution as we hope to approach convergence:

st = βst−1 + (1− β)(∇θL ⊙∇θL),
θt+1 = θt −

α√
st + ϵ

⊙∇θL,

where ϵ serves as a stability factor to avoid division by 0, and is usually a number around 10−9.

Adaptative Moment Estimation (Adam)

Another widely used method that takes into account the second moment of that gradient
is Adam or Adaptive Moment Estimation [51]. In contrast to RMSProp, Adam considers both
the first order (mt) and the second order moment (st) of the gradient of each parameter, being
a combination of momentum GD and RMSProp. Adam further includes bias corrections to
these moments, denoted respectively m̂t and ŝt. We will not derive the expression of these
corrections, but the original authors of the paper argue for their motivation: since the first-
and second-moment terms are exponentially weighted averages, their initialisation value of zero
inevitably introduces a bias into their accumulation value.

Adam has been shown to be an extremely robust optimisation algorithm, which means that
it performs well in a wide class of different problems [52, 53]. For our use and purposes, we
simply state the update rules below,

mt = β1st−1 + (1− β1)∇θL,
m̂t =

mt

1− βt2
,

st = β2st−1 + (1− β2)(∇θL ⊙∇θL),
ŝt =

st
1− βt2

,

θt+1 = θt −
α√

ŝt + ϵ
⊙ m̂t.

Note that the first and second moments are modulated by different constants β1, β2, while
ϵ has the same role as in RMSProp.

4.2.1 Stochastic Gradient Descent

Up to this point, the discussion about statistical learning had as a cornerstone the minimi-
sation of the loss of Eq. 4.2, evaluated throughout the dataset D. In reality, most deep learning
methods are conducted with an evaluation of the loss and respective gradients on subsets of the

49

Chapter 4. Machine Learning Background Gradient-based Optimisation

dataset. This technique is adopted not only for efficiency benefits but also for its impact on con-
vergence. To illustrate it, we recall the simple update rule for the steepest descent, in Eq. 4.6.
For the calculation of the gradient, the proportionality of Eq. 4.1 can be turned into equality
by choosing a mean squared error approach. Recalling also that we are solving a parametrised
problem, we write

∇θL(θ) =
1

|D|
∑

(xi,yi)∈D
∇θ||fθ(xi)− yi|| (4.10)

≈ 1

|B|
∑

(xi,yi)∈B
∇θ||fθ(xi)− yi|| (4.11)

Here we denote | · | the number of elements in the dataset. Equation 4.10 involves the
calculation of a number of derivatives that scale with the size of the dataset, which can become
significant. On the other hand, stochastic gradient descent (SGD) makes use of the fact that
this evaluation is an expectation, and approximates its result for a smaller subset B ⊆ D. This
subset, called a batch, is often obtained by randomly sampling from the full set, with or without
reposition. Then, instead of updating θt to θt+1 only after the computation of the gradient on
the entirety of the data set, we immediately update after calculating the gradient of the partial
expectation of the sampled losses.

There is a clear compromise between a reduced computational cost for a smaller batch size
and a worse approximation of expectation of the gradients. However, vectorisation techniques
can be used to compute the gradient on moderately sized batches, which is not necessarily
advantageous in the case of smaller batches.

Stochastic gradient descent is commonly accompanied by a scheduler for the learning rate,
which means that one adds a step dependence to α, often an exponential decay. This is because
it has been shown that, with an appropriate decay rate, SGD will most likely reach a global
minimum if the objective function is convex or quasi-convex [54]. Even if that is not the case,
it almost surely leads to a local minimum that is often good enough. All the above-mentioned
gradient optimisation algorithms can be employed with the use of batches.

The choice of SGD is also motivated by some improvement in convergence of the minimisation
problem. This was first observed empirically, and while the explanation is still disputed, it is
generally accepted that the approximation of the gradient incurs in some randomness in the
minimisation trajectory that helps the algorithm escape occasional local minima [55, 56].

4.2.2 Natural Gradient

We now present the slightly more niche technique of Natural Gradient Descent (NGD) [57,
58]. With the previous methods in mind, the formalism for NGD can be understood as an
innocent preconditioning of the gradient. However, the conceptual arguments surrounding this
method are profound.

Natural gradient descent belongs to the class of approximate second-order methods, which
aim at more explicitly approximating the Hessian matrix of Newton’s method. Interestingly,
however, NGD can potentially yield better results than second-order methods [59] because the
Hessian of the problem, which could be negative definite, is approximated by a positive semi-
definite matrix.

To better understand NGD, it is important to bring the connection between two related
perspectives of statistical learning and optimisation: empirical risk minimisation (ERM) and
maximum likelihood estimation (MLE). Our approach to the task of training a model, motivated
in 4.1.1, was based on ERM. There, learning was seen as the minimisation of prediction errors
measured by the expected loss over a given distribution of data. This means that we want to
minimise E[L(fθ(x), y)] with fθ being our model. The loss function L can sometimes be called
a risk function.

50

Chapter 4. Machine Learning Background Gradient-based Optimisation

In many other problems and for us specifically in the VMC scenario, it is beneficial to perceive
the learning task from the point of view of MLE. In this frame of reference, we want to find
parameters for a model fθ such that the observed data are more probable. We then train the
models by a minimisation task over the log-likelihood of the model ln (pθ(x)) [49].

In our discussion of the steepest descent, the constraint minimisation problem of Eq. 4.5
was solved considering the notion that the distance between the parameters is the Euclidean
distance. In the MLE framework, one approach is to guide the update rule by measuring
distances between probability distributions, via the Kullback-Leibler (KL) divergence. If we
consider two distributions that differ simply by a change θ′ = θ+δθ in parameter, we can write

DKL(pθ || pθ′) = Ex∼pθ [ln(pθ(x))− ln(pθ′(x))]

≈ 1

2
δ⊤θ F (θ)δθ,

where the approximation comes after second-order expansion of DKL around δθ = 0. In this
expression, F is the Fisher information matrix (FIM), given by

Fij(θ) = Ex∼pθ
[
(∂θi ln(pθ(x)))(∂θj ln(pθ(x)))

]
, (4.12)

with x representing the observed data points, p is a probability distribution to be studied with
respect to the parameterisation θ. In practical implementations, the expectation value of the
FIM is approximated by stochastic sampling and is called the empirical Fisher.

With this notion of distance3, the constraint minimisation problem now becomes

θt+1 = argmin
θ

[
L(θt) +∇L(θt)⊤δθ +

1

2
δ⊤θ F (θ)δθ

]
. (4.13)

Finally, this is allows us to write the parameter update scheme as simply

θt+1 = θt − αF−1(θt)∇L(θt), (4.14)

again, with α the learning rate. This expression makes it clear how NGD can be interpreted
naively because its expression resembles Newton’s method update rule of Eq. 4.9. In fact, F
is an approximation of the Hessian matrix, but Eq. 4.12 yields an optimisation scheme that
is invariant in parametrisation. This comes from the parameterisation invariance in the KL
divergence and helps mitigate issues such as large disparities in parameter scaling.

Of course, while approximate second-order methods might converge to minima faster than
first-order methods, they are computationally more expensive, at least in clock time. For exam-
ple, NGD adds the overhead of either computing and inverting a possibly large FIM or solving
a linear system of equations, even if the full Hessian is not computed. When we discuss the
use of the quantum analogue of NGD for VMC calculations, we will see that this point, while
still important, is less crucial. There, the computational bottleneck cost is not as much the
optimisation scheme, but the energy calculations and generation of proposals via high quality
random number generation.

4.2.3 Quantum Natural Gradient

We now try to connect the concepts of variational Monte Carlo and with natural gradient
descent from the perspective of stochastic reconfiguration (SR). As shown in [60], the Euclidean
metric is not the optimal choice for the energy minimisation task of variational methods. Firstly,
VMC does not fall under the typical supervised learning umbrella, therefore, reducing the ob-
jective function to L = ⟨EL⟩ requires specific considerations. This will be better understood in

3The KL divergence is technically not a true distance metric because it lacks symmetry. Nevertheless, the
symmetry property is satisfied locally.

51

Chapter 4. Machine Learning Background Artificial Neural Networks

section Sec. 4.4 where we pose VMC as a reinforcement learning algorithm. The search for the
best optimisation strategies for variational minimisation, especially with neural networks, is still
an active field of research [29].

One of the first approaches to avoid an optimisation under the Euclidian metric was achieved
by driving a constrained variational ansatz to the ground-state via imaginary time evolution as
done in [61]. Later, Stokes et al. [62] more rigorously showed the link between the imaginary
time evolution view of SR and its understanding as a quantum extension of NGD. Since then,
SR and NGD have been extensively used in quantum variational Monte Carlo simulations and
variational quantum circuits [63, 11, 28] with higher stability than previous methods.

Just as KL divergence and the FIM are invariant under reparametrisation, so are their
quantum counterparts: the Fubini-Study distance [62] and the quantum geometric tensor. These
provide an optimisation landscape that is inherent to the geometry of the densities. To provide
a concrete example, consider a variational ansatz ψθ mapping elements θ of the parameter space
to vectors in the Hilbert space. The distance of interest between elements in the Hilbert space
is not the Euclidean distance in parameter space but the Fubini-Study distance. Then, given
the state ψθ′ = ψθ+δθ, it can be written:

D(ψθ, ψθ′) = arccos

√
⟨ψ|ψθ′⟩⟨ψθ′ |ψ⟩
⟨ψ|ψ⟩⟨ψθ′ |ψθ′⟩ ≈

1

2
δ†θG(θ)δθ. (4.15)

Similarly to how the KL divergence, when expanded to second order around δθ yields the
FIM, the Fubini-Study distance, when expanded to second order, yields the quantum geometric
tensor G, also called the Fubini-Study metric:

Gij(θ) = EX∼P=|ψ|2
[
∂θ∗i lnψ

∗(X,θ†)∂θj lnψ(X,θ)
]

(4.16)

− E
[
∂θi lnψ

∗(X,θ†)
]
E
[
∂θj lnψ(X,θ)

]
. (4.17)

As shown in [62], in the case where the system is not dependent on a complex phase factor,
the quantum geometric tensor is a multiple of the FIM, 4Gij = Fij . This is of particular interest
for our applications, as we deal only with real parameters of the trial wavefunction because of the
stationary states studied and the bounded nature of the system. Also, since the proportionality
constant can be included in the learning rate in the update rule, we proceed simply by employing
the empirical FIM and using the update rule described by Eq. 4.14, with pθ = |ψ|2.

4.3 Artificial Neural Networks

The previous exposition on statistical learning was intentionally detached from the theory
of artificial neural networks (ANNs). This is to show that the principles behind the methods
discussed can be agnostic to the choice of a specific network architecture. Given that neural
networks are a central part of the current work, we first introduce the concept of neural networks
by justifying their name and talking briefly about their history. Typically, the treatment of the
topic of neural networks is obfuscated by multi-layer perceptrons, a type of feed-forward network.
In the current work, while we will include them, we also explore additional architectures.

In their most general form, ANNs are computational models represented by connected graphs:
they contain nodes (vertices) and connections (edges). These nodes are called artificial neurones
because their functionality is inspired, at least loosely, by biological neurones. The concept is
based on the transmission of signals throughout the connections of the network, with modulation
occurring at the nodes. While in biological systems the signal is electric, in an artificial neural
net such a signal is usually a numerical value (analogue ANNs are also possible and have shown
interesting use cases [64]).

52

Chapter 4. Machine Learning Background Artificial Neural Networks

If we consider a network in which neurones only output binary values, the analogy extends
further: a signal of 0 can represent an inactive neurone, while 1 indicates an active one. Just
like in logical gates, these simple individual operations form the basis to perform more complex
tasks, as more layers are introduced and the operations are composed, allowing for non-linearity
in the signal.

The schematics of this graph-like structure has a myriad of format variations, called archi-
tectures. In addition, networks can also differ in other aspects, such as activation functions. For
a visual example of two of these architectural variations, we refer to Fig. 4.4 and Fig. 4.2.

4.3.1 Boltzmann Machines

Boltzmann machines (BMs) are a subset of a larger group of statistical learning models called
generative models. Given two sets of data X and Y , while the more popular discriminative
models try to capture the conditional probability p(Y |X), generative models will learn the joint
probability p(X,Y) of the train data set, where we consider Y to be the target. Also categorised
under the class of energy-based model, a BM ideally detects the latent variables of said data set
and specialises in generating data that follow the probability distributions of the training set.

By latent variables, we mean variables that cannot be directly observed in the data but only
indirectly inferred. Latent variables are the gems of dimensionality reduction in ML. Good latent
variables are those that carry significant information about data without much loss of informa-
tion. Indeed, this is the whole motivation behind manifold learning [65]. Most high-dimensional
data are often artificially high-dimensional and can be projected to lower-dimensional (latent)
manifolds without losing much information. For example, the number of degrees of freedom in
a general image (pixel values) is incredibly high. However, when a topic for an image is set, this
significantly reduces the dimension of the space.

More precisely, BMs are stochastic generative models inspired by the concept of Boltzmann
distribution in statistical physics. Unlike in a conventional network, the concept of an output
layer is not present in a BM and it is said to be undirected, as is clear from Fig. 4.2. Instead,
there is a visible and a hidden layer of nodes assuming, originally, binary values. These nodes
are connected, or modulated, by a set of weights and biases.

v1

v2

v3

vm

h1

h2

h3 h4

hn

a1

a2

a3

am

b1

b2

b3 b4

bn

wmn

s34

r23

Figure 4.2: Schematics of a BM. The nodes coloured in light purple represent the hidden layer
of the network. Letters s and r represent the intra-layer connection, while and w represents
outer-layer connections.

Although generative networks can be applied to various tasks, image generation serves as
a practical illustration. For example, when provided with a dataset of handwritten digits, the

53

Chapter 4. Machine Learning Background Artificial Neural Networks

network captures the probability distribution pattern of the pixel values. Then, after the training
phase, these networks can produce samples that resemble those in the training set.

In BMs, the training process starts by sampling the values of the hidden and visible node
vectors h and v. The inferred probability distribution is then modelled by minimising an energy
function E(h,v) - hence the name energy-based model. More specifically, the probability is a
Boltzmann distribution,

P (h,v) =
exp (−E(h,v))

Z
, (4.18)

where Z is the partition function to guarantee the probability over the whole parameter space
sums to 1. This is in general an intractable function to attain. Fortunately, as discussed in Sec.
3.2.1, if the sampling process is done following a Metropolis algorithm, the fraction between
probability distributions ensures that the partition function is in fact not necessary. More
explicitly, the energy function is given by

E(h,v) = −v⊤Rv − v⊤Wh− h⊤Sh− a⊤v − b⊤h,

where the vectors a and b serve as bias terms and the matrices R, W , and S, are modulating
the connections between layers. More specifically, R modulates intra-layer connections in the
visible layer, S plays an analogous role for the hidden layer, and W , between hidden and visible
units. If we limit the network to only extra-layer connections, we have a restricted Boltzmann
machine (RBM).

During training, the weights and biases of the model are updated aiming at maximisation of
the likelihood of the model, for example via gradient descent over the negative log-likelihood.

Restricted Boltzmann Machines

v1 v2 v3 vm

h1 h2 h3 hn

a1 a2 a3 an

b1 b2 b3 bn

wmn

· · ·

· · ·

Figure 4.3: Schematics of an RBM. Modified from the code found in [66].

The RBM is the generative model for which we focus part of our work. By limiting the
connections of the network, we obtain what can be seen in the schematics of Fig. 4.3. Regardless
of this restriction, the probability function can still be expressed by Eq. 4.18, while the energy
term will now be, for a binary-binary (Ebb) or a Gaussian-binary case (Egb),

Ebb(h,v) = −v⊤Wh− a⊤v − b⊤h,

Egb(h,v) =
∥v − a∥2

2σ2
− b⊤h− v⊤Wh

σ2
.

Despite the modified architecture, the principle of training an RBM is analogous to that
of BMs. However, training RBMs is considered an easier task than training other undirected
models, as noted in [67], because the (unnormalised) conditional P (h|v) can be obtained with
a closed expression.

54

Chapter 4. Machine Learning Background Artificial Neural Networks

As previously touched upon, the values of the hidden and visible nodes were originally
conceived as binary sampled variables, but they can also assume continuous values. This choice
determines the type of the RBM, and common choices are binary-binary or Gaussian-binary. As
the name implies, the former admits only binary values to both hidden and visible units, while
the latter takes normally distributed variables in the visible layer.

4.3.2 Feed-Forward Neural Networks

In its general definition, a feed-forward neural network (FFN) is a way to organise a set
of compositions of parametrised functions in a sequential way. The way nodes are organised
in layers and how they are connected results in different architectures. A visual example of a
common FFN setup can be seen in Fig. 4.4.

x1

x2

xn

...

a
(1)
1

a
(1)
2

a
(1)
3

a
(1)
m

...

a
(2)
1

a
(2)
2

a
(2)
3

a
(2)
m

...

a
(3)
1

a
(3)
2

a
(3)
3

a
(3)
m

...

y1

y2

yk

...

input
layer

hidden layers output
layer

Figure 4.4: A generic multi-layer perceptron with n input nodes, k output nodes and a set of
three hidden layers, all with m nodes. The superscript denotes the layer number, and a indicates
that the value has been activated by some function σ. Adapted from [68]

.

In contrast to an RBM, this sequence controls the flow of information, or value propagation,
in one preferential direction in the network. When an FFN is said to be densely connected, each
neurone receives input from all other neurones in a previous layer and, after multiplying it by a
set of parameters, adding a bias value, and composing it with some activation function σ, passes
the result to neurones in the next layer. This process is called a forward pass of the network
and, for an L-layer deep network, is better described in Eq. 4.19:

a(0) = x

h(i) = W(i) ∗ a(i−1) + b(i)

a(i) = σi(h
(i))

}
i ∈ {1, ..., L− 1},

ŷ = σL(W
(L) ∗ h(L−1) + b(L)). (4.19)

Here we denote W(i) and bi as the weight matrix and bias vector for the i-th layer of the
network. In addition, in Eq. 4.19, h(i) represents the output of the i-th hidden layer, while
a(0) = x is the input layer. Lastly, σi represents the activation function of each layer. Fig. 4.5
analyses the forward pass of the first hidden layer separately to provide a better understanding
of the matrix operations involved in Eq. 4.19.

55

Chapter 4. Machine Learning Background Artificial Neural Networks

a
(1)
1

a
(1)
2

a
(1)
n a

(1)
m

a
(1)
2

a
(2)
1

w1,1w1,1

w1,2w1,2

w1,nw1,n...
...

= σ
(
w1,1a

(1)
1 + w1,2a

(1)
2 + . . .+ w1,na

(1)
n + b

(1)
1

)
= σ

(
n∑
i=1

w1,ia
(1)
i + b

(1)
1

)
a
(2)
1

a
(2)
2
...
a
(2)
m

 = σ



w1,1 w1,2 . . . w1,n

w2,1 w2,2 . . . w2,n
...

...
. . .

...
wm,1 wm,2 . . . wm,n



a
(1)
1

a
(1)
2
...
a
(1)
n

+


b
(1)
1

b
(1)
2
...
b
(1)
m




= σ
(
W(1)a(1) + b(1)

)
Figure 4.5: Forward pass between the two first layers of the network. Here, the dependency of
the weight matrix elements and the connected nodes is clear, together with the activation of the
affine transformation. Adapted from [68].

The activation function σ is what allows the network, which is now our parametrised model
fθ(x) to express non-linear functions and learn from non-linear data, present any interesting
dataset. If not for activation functions, the forward pass described in Eq. 4.19 would simply be
compositions of linear functions.

Common activation functions include the sigmoid function, which produces outputs between
0 and 1, the hyperbolic tangent, with outputs from -1 to 1. More recent alternatives such as
the rectified linear unit (ReLU), aim at mitigating the problem of vanishing gradients. In our
implementations, we opted mostly for the more recent Gaussian Error Linear Units (GELU)
function [69], which provides enhanced performance in specific deep learning applications, and
if given by

GELU(x) = 0.5x

(
1 + erf

(
x√
2

))
.

Knowing which function to use is a complicated task and requires experimentation, as a good
choice can greatly influence training efficiency and accuracy of the network.

The choice of the architecture of a network is often guided by the problem to which one aims
to tackle, but most networks have some overlapping core structure in the form of the mentioned
input, hidden, and output layers and activation functions. The weights and biases are then
iteratively updated using a gradient scheme that tries to converge to a global minimum of the
cost function L. As mentioned in 4.2, this cost function is a measure of how well the model
performs, be it in regression or classification problems.

Training An FNN

The task of supervised learning has some important differences from a usual minimisation
problem. We are usually limited in the amount of training data, while in a minimisation problem,
we might have access to the entire domain where the model should be optimised. Here we briefly
describe the training of an FFN, but a more complete coverage of the topic can be found in [67].
Typically, we calculate and aim to minimise an average loss over a given training set, with an
associated probability p̂.

J(θ) = E(x,y)∼p̂ [L(fθ(x), y)] ,

Within the empirical risk minimisation framework, we hope that by minimising this expected
value, we will effectively generalise the probability distribution of the true data p. We inten-
tionally do not focus much on this aspect, as in VMC there is no explicit separation between
training and test sets. As this expectation value is empirically just an average in the training
set, we sometimes use ∇L and ∇J interchangeably.

56

Chapter 4. Machine Learning Background Artificial Neural Networks

Regardless of the loss of the model, the training process of an FFN will involve the following
steps. First, we perform a forward pass to generate predictions. Next, we evaluate these pre-
dictions and compute the gradient of the loss function with respect to the parameters. Then,
with this gradient information, we update the parameters accordingly, with any of the methods
described in the section on gradient-based optimisation Sec. 4.2.

To ensure that the loss information flows backward through the network and updates the
parameters correctly, we must consider the function compositions in Eq. 4.19 due to different
layers in the network. This involves correct application of the chain rule during the gradient
evaluations of ∇θL, which will in fact depend on the activation functions that are used.

To handle flexible and arbitrary networks, gradients are often computed using automatic
differentiation, which we explain in more detail in Sec. 5.2.1. This approach can sometimes ob-
scure the backward propagation step. For clarity, we provide a simplified mathematical overview
of the backpropagation equations, the demonstrations of which are available in Nielsen (2015)
[70]. The gradient of the loss function with respect to the weights and biases of layer i are given
by

∇W(i)L = δ(i)(a(i−1))⊤ (4.20)

∇b(i)L = δ(i), (4.21)

where δ(i) represents a measure of the loss at layer i, given by

δ(i) =

{
∇ŷL ⊙ σ′L(h(L)) if i = L,

(W(i+1))⊤δ(i+1) ⊙ σ′i(h(i)) if i < L.

Due to the chain rule evaluation order, δ(i) depends on δ(i+1) and we must start from the
last layer and progress inward. The expressions further simplify given the knowledge of the
activation functions σ. A depiction of the training is given by Algorithm 2.

57

Chapter 4. Machine Learning Background Artificial Neural Networks

Algorithm 2 Training a Feedforward Neural Network

Input: Training data (x,y), initialized weights W(i), biases b(i), and learning rate α
for each training iteration do

Forward Pass:
for each layer i ∈ {1, . . . , L− 1} do

Compute pre-activation: h(i) = W(i)a(i−1) + b(i)

Compute activation: a(i) = σi(h
(i))

end for
Compute output: ŷ = σL(W

(L)h(L−1) + b(L))
Computate loss: L(ŷ,y)
Backward Pass:
Compute output layer error: δ(L)

for each layer i ∈ {L− 1, . . . , 1} do
Backpropagate error: δ(i)

end for
Gradient Computation:
for each layer i ∈ {1, . . . , L} do

Compute gradients ∇W(i)L and ∇b(i)L
end for
Parameter Update:
for each layer i ∈ {1, . . . , L} do

Update weights: W(i) ←W(i) − α∇W(i)L
Update biases: b(i) ← b(i) − α∇b(i)L

end for
Check for convergence or stopping criteria

end for

A Comment on the Capabilities of ANNs

When talking about the learning capabilities of neural networks, we must mention universal
approximation theorems. ANNs are compositions of parametrised functions, but how can one
ensure that they are capable of approximating an ideal model f̂ , directing the statistics of the
observed data? In fact, there are a set of universality theorems which provide this guarantee
under certain conditions.

Cybenko showed in 1989 [71] that multi-layer perceptrons with sigmoid functions can ap-
proximate any continuous function. The theorem, proven for at least one hidden layer, does not
mention any constraint on the number of epochs or neurones required. This means that such
universality could in practice be infeasible. Further developed theorems exist that eliminate
the requirement of a sigmoid activation function [72], and others have shown that the universal
approximation theorem also applies to convolutional networks, recurrent networks, and more
recently graph neural networks [73, 74, 75].

Being able to approximate an arbitrary function is only half the problem. Why would such
a model be able to generalise to unseen data? To quote R. Grosse (2021) [76]: “After all, the
optimisation landscape is non-convex, highly non-linear, and high-dimensional, so why are we
able to train these networks? In many cases, they have far more than enough parameters to
memorize the data, so why do they generalise well? [...] the attitude of the neural net community
was to train first and ask questions later. Apparently, this worked.”

In practice, even if the convergence of a problem is not guaranteed, we often reach “good
enough” solutions with NNs. It is not uncommon to use methods for which there is no theoreti-
cally solid argument other than documented success. Fortunately, theoretical proofs have so far
been presented in the years that follow.

58

Chapter 4. Machine Learning Background Reinforcement Learning and VMC

4.4 Reinforcement Learning and VMC

Various forms of reinforcement learning (RL) exist, yet they all address an optimisation
problem with the concept of agents. These agents, through a set of actions A = {at}, are able
to influence the environment states S = {st}. Their goal is to maximise the accumulation of
immediate rewards rat(st, s′) for adopting a state s′.

Contrary to supervised learning, in which the stream of input for a model comes from a
fixed data set, in reinforcement learning, such a dataset is iteratively dependent on the previous
samples. In this sense, we say that the agent interacts and changes the environment, making
more explicit the need for balance between exploration and exploitation to train a model.

To try and maximise a cumulative reward, an agent can take random actions to explore
configuration space (exploration), but also use information from current and previous decisions
to be rewarded (exploitation). Too much exploration leads to multiple sub-optimal choices,
while too much exploitation results in local minima from limited prior knowledge.

In VMC, there is an element of exploration when modelling a probability distribution by ac-
cepting steps with a guided acceptance rule. Furthermore, VMC uses information from previous
samples to minimise the expected value of the local energy, which is cumulative by construc-
tion. Not occasionally, reinforcement learning can be modelled by a Markov process, with an
associated transition probability ta(s, s′) from s to s′ under an action a.

The goal of RL agents is to learn a parametrised policy distribution πθ : A×S → [0, 1], which,
once optimised, will produce a stationary Markov chain distribution that maximises the expected
cumulative reward over time. Consider the Markov chain of state and action τt = (st, at). There
are several ways of measuring this expected cumulative reward, one of which being

J (θ) = Eτ∼πθ [Gt]

Gt =
∞∑
k=0

γkrat+k+1

with γ ∈ [0, 1) a discount return rate, so that immediate rewards are more important for step
t than ones far in the future. This expectation value is usually computed via Monte Carlo
averaging, and there are multiple approaches to optimise this reward, such as gradient ascent,
with neural networks as agents. Then, it can be shown [77] that

∇θJ (θ) ∝ Eπθ [Gt∇θ lnπθ(τ)] .

Unfortunately, and this is a problem we also face in VMC, the gradients of expectation values
of the estimated loss/reward function have very high variance, motivating the use of approximate
second-order methods like NGD, but also techniques like the REINFORCE [78] and a variance
reduction technique called the baseline method. When these are used, the gradient is calculated
in a more stable way [67] by subtracting a baseline b(θ)

∇θJ (θ) ∝ Eτ∼πθ [(Gt − b(θ))∇θ lnπθ(τ)] ,

where b is simply an offset that does not depend on on the action. There are techniques to
further find the baseline to best reduce the variance, but it is sometimes simply set as the
expected reward J (θ). Here we see a stark parallel between the gradient of the cumulative
reward and the gradient of the expected local energy of the quantum system:

∇θE(θ) = 2ER∼|ψθ|2 [(EL − E(θ))∇θ lnΨθ(R)] .

At this point, we see it is at least possible to adapt RL methods to improve the VMC scheme.
Evidently, some dissimilarities must also be mentioned. As noted in [79], the gradient expressions
in VMC involve quantum amplitudes instead of probability, and furthermore, the probability

59

Chapter 4. Machine Learning Background Reinforcement Learning and VMC

of the quantum state is often not normalised. However, the analogy between neural network
reinforcement learning and VMC remains. Here, the neural networks that suggest quantum
states act as agents, with the environments offering feedback in the form of the energy of the
state. The parameters are then adjusted to minimise this energy, implying that the reward can
correspond to the negative of the local energy.

4.4.1 Neural Quantum States

In 2017, Carleo and Troyer were the first to introduce a method in which larger neural
networks are used as a variational ansatz for quantum states [6]. The method, which they called
neural quantum states (NQS), was conceptualised using a restricted Boltzmann machine as the
network, aiming at solving interacting spins models. Now, NQSs have been applied to a large set
of physical problems and using many common types of neural networks, such as feed-forward,
convolutional, recurrent, graph neural networks, and more [10]. At the core of these methods is
a variational minimisation task under a reinforcement learning framework.

Similar variational ansätze, such as matrix product states [80], have been used previously, but
with limited generalisability to different quantum systems. The motivation for employing neural
networks is rooted in their representational power, as guaranteed by universal approximation
theorems, combined with their capacity for dimensionality reduction. In fact, the field of machine
learning has faced challenges analogous to those of quantum mechanics when it comes to the
curse of dimensionality.

To describe neural quantum states, we follow [10] and proceed in a similar way to our VMC
section, Sec. 3.3. A general state in a basis set of the possible configurations {|σ⟩} is written

|ψ⟩ =
∑
σ

ψ(σ) |σ⟩ ,

where σ could be spin configurations, as posed originally by Carleo, or positions, in our case.
Then, different configurations are sampled and are the inputs to the network, which serve as the
coefficients ψ(σ). The neural quantum states can be expressed as

ψθ(σ) =
√
pθ(σ)e

iϕθ(σ),

with amplitude pθ(σ) = |ψθ(σ)|2 and phase ϕθ(σ) = Im(lnψθ(σ)). Different methods exist
for handling the phase of the wavefunction. One approach involves using two distinct networks
or separate outputs: one for the imaginary component and another for the real component.
Alternatively, the network can be trained with complex parameters. This approach increases
the size of the parameter space, and since we deal with bounded and time-independent systems,
we chose to disregard the imaginary part of the wavefunction altogether.

Then, the expectation values of observables are approximated via Monte Carlo averaging, in
complete analogy to the variational Monte Carlo approach:

⟨Ô⟩ ≈
∑
σ

Pθ(σ)OL,θ(σ),

with the normalized configuration probability Pθ(σ) and the local operator estimator, OL,θ(σ)
already defined in Sec. 3.3. Again, if one uses sampling algorithms such as Metropolis, the
ansätze used in the sampling need not be normalised - which is very useful for deep networks,
where calculating the partition function is difficult.

Training an NQS, as most of the interesting machine learning problems, is a non-convex task.
Therefore, machine learning techniques and optimisers are beneficial in the parameter update
routine. A generic NQS training algorithm is shown in Algorithm 3, where we show that NQSs
are trained without the use of external training data. In the displayed case, we use the space
configurations of the system, σ = R.

60

Chapter 4. Machine Learning Background Reinforcement Learning and VMC

The details of our specific RBM, FFN and Deep Set FFN implementations, together with
the standard VMC ansatz, can be seen in the Methods part, Sec. 5.1.

Algorithm 3 Neural Network VMC with MCMC Sampling. The parameters θ are updated
based on the local energy EL(Ri) calculated for sampled configurations. The Metropolis ac-
ceptance ratio A and uniform probability distributions Uc are used to accept or reject proposed
configurations. All particles are moved at once.

Initialize the state parameters and position ψθ(R)← θ0, R0

for each epoch do
for each MCMC step do
R′ ← Propose new configuration based on R and θ

A← Compute Metropolis acceptance ratio A(R→ R′) = min
(
1, |Ψθ(R

′)|2
|Ψθ(R)|2

)
.

r ∼ Uc(0, 1) (Draw uniform number)
if A ≥ r (Acceptance criteria) then
R← R′ (Accept new configuration)

end if
end for
{Ri} ← Sample batch of configurations by MCMC
EL(Ri)← Calculate local energy for each Ri

∇θ⟨EL⟩ ← Compute gradient with respect to θ
θ ← θ − α∇θ⟨EL⟩ Update parameters
Check for convergence or stopping criteria

end for

61

Part II

Methods

62

Chapter 5

Methods and Implementations

In this section, we describe our implementations and the specific techniques employed to
achieve our results, along with a brief theoretical background when needed.

5.1 Trial Wavefunctions

5.1.1 Standard VMC Ansatz

Our simplest variational ansatz is a parametrised Gaussian and involves no neural network.
For a system of N particles and dimension d, with a collective position vector flattened as
R ∈ RN ·d, we allow for N · d variational parameters and write

ψ
(vmc)
θ (R) = exp

[
−(R⊙R)⊤θ

]
, (5.1)

where ⊙ represents element-wise product. When dealing with the log of the wavefunction, we
can simply write

ln |ψ(vmc)
θ (R)| = −

Nd∑
i=1

θir
2
i .

If θi = 0.5 for every i, this ansatz accurately represents the ground-state wave function of a
non-interacting system of bosons at zero Kelvin. It is, however, incapable of satisfying particle-
exchange antisymmetry, no matter the choice of parameters, and also fails to satisfy Kato’s cusp
condition. The antisymmetry requirement can be satisfied by multiplying the ansatz by a Slater
determinant, while the cusp condition is addressed via a Jastrow factor (J) or a Padé-Jastrow
factor (P), which will be discussed shortly.

The Slater determinant could be any determinant of single-particle orbitals, for example
obtained from the Hartree-Fock calculation or the ground state for the non-interacting problem
Φ0, which is how we proceed. We showed in Sec. 2.6 that, for the fermionic problem, the single
particle functions {ϕj(ri)} are a product of a Gaussian envelope and a product of Hermite
polynomials for each coordinate Hn(ri) ≡ Hnx(xi)Hny(yi) · · · , where n represents the quantum
number. Then, for the VMC ansatz we let the parametrised gaussian be the envelope, and write
the VMC Slater ansatz,

ln |Ψ(vmc)
S | = ln |ψ(vmc)

θ (R)|+ ln |det{Hj(ri)}| . (5.2)

As we discuss in Sec. 2.6, the block diagonal form of {ϕj(ri)} further allows us to split it into
a product of smaller spin-up and spin-down determinants. Additionally, we will not carry the
Slater subscript alone, as every use of the ansatz for fermions will necessarily be accompanied
by a determinant of Hermite polynomials.

63

Chapter 5. Methods and Implementations Trial Wavefunctions

Jastrow Factor and Padé-Jastrow Factor

The log ansätze, including the Jastrow factor and Padé-Jastrow factor, follow respectively,

ln |Ψ(vmc)
SJ | = ln |Ψ(vmc)

S |+ Jα(R), (5.3)

ln |Ψ(vmc)
PSJ | = ln |Ψ(vmc)

S |+ Pα(R). (5.4)

Both J and P introduce inter-particle correlation and depend on the inter-particle distance
rij = |ri − rj | as

Jα(R) =
N∑
i=1

N∑
j>i

rijαij ,

or

Pα(R) =

N∑
i=1

N∑
j>i

aijrij
1 + αrij

.

Note the single variational parameter α in P instead of a vector. In addition, the factors
aij , which depend on the particles i and j, are chosen to enforce the ansatz to satisfy Kato’s
cusp conditions, described in Sec. 2.6. For a two and three-dimensional fermionic system, and
representing the spin coordinate of particle i as σi, these values were determined by Huang et
al. [81], and follow

aij =

{
1
d+1 if σi = σj ,
1
d−1 else.

It should be mentioned that, while we define the Slater-Jastrow and Padé-Slater-Jastrow
factors under the VMC ansatz subsection, it can be added to any of the other ansätze presented
below.

5.1.2 Restricted Boltzmann Machine Neural Quantum States

Given the continuous character of the Monte Carlo sampled values, the restricted Boltzmann
machine (RBM) of choice should be Gaussian-Binary. The sampled values for the RBM’s visible
nodes will indeed correspond to the positions of the particles whose probability distribution is
related to the wave function that we aim to obtain. Thus, these will be denoted as R rather
than v used in Sec. 4.3.1.

Moreover, the physical quantity we want to sample is related to the marginal probability
distribution of the visible units, p(R), while the hidden node’s values are related to latent vari-
ables that do not represent physical quantities of interest. Consequently, we obtain the marginal
distribution of interest by integrating p(R,h) over the hidden nodes’ degrees of freedom,

p(R) =
1

Z

∑
{h}

e−Egb(R,h)

∝
∑
{h}

exp

{
−
(
∥R− a∥2

2σ2
− b⊤h− R⊤Wh

σ2

)}
. (5.5)

The proportionality comes from the fact that we do not need the partition function due to
the Metropolis sampling. Moreover, we will deal only with hidden units with binary values, so
Eq. 5.5 further simplifies, as shown in Appendix D. Finally, if we model the probability density
of a wavefunction as the marginal distribution probability of the visible units of the RBM, we
can write ∣∣∣ψ(rbm)

θ (R)
∣∣∣2 = exp

{
−

Nd∑
i

(ri − ai)2
2σ2

}
nh∏
j

[
1 + exp

{
bj +

Nd∑
i

riwij
σ2

}]
, (5.6)

64

Chapter 5. Methods and Implementations Trial Wavefunctions

where nh is the number of hidden units, and σ is the standard deviation of the Gaussian distri-
bution that the visible units are assumed to follow. In Eq. 5.6, θ serves as a container for all
parameters, and for the use of the log wavefunction,

ln
∣∣∣ψ(rbm)

θ (R)
∣∣∣ = −1

2

Nd∑
i

(ri − ai)2
2σ2

+
1

2

nh∑
j

[
1 + exp

{
bj +

Nd∑
i

xiwij
σ2

}]
. (5.7)

Once again, on its own this trial function does not obey symmetry, antisymmetry, or cusp
conditions. Then, the combination of this ansatz with a Slater determinant, or correlation factors
is done in analogy to the VMC, equations 5.2, 5.4 and 5.3,

lnΨ
(rbm)
S = ln |ψ(rbm)

θ (R)|+ ln |det{Hj(ri)}| ,
lnΨ

(rbm)
SJ = lnΨ

(rbm)
S + Jα(R),

lnΨ
(rbm)
PSJ = lnΨ

(rbm)
S + Pα(R).

Lastly, we should mention that to avoid exploding gradients, a, b, and W were initialised in
a scale inversely proportional to the size of the visible layer, such as N(0,0.1)/

√
Nd. A similar

approach was taken for the feed-forward ansatz, which is our next model.

5.1.3 Feed-Forward Neural Quantum States

Feed-forward neural networks (FFNs)have also been used to model quantum systems, albeit
in a slightly different way than RBMs. This difference comes from the fact that FFNs are not
probabilistic or generative models in the same way as RBMs. As there is a clear notion of input
and output in this network, we could define the neural network with one output as a function
f : RNd → R and write a simplified ansatz as

ψθ(R) = exp{fθ(R)}, (5.8)

which means that in the log domain, the ansatz is simply the network. Now, if the neural
net only admits real parameters, as we defined, the exponential nature of the ansatz could
never satisfy antisymmetry under the exchange of particles. There are several methods to
guarantee that antisymmetry is satisfied with feed-forward NQSs, with perhaps the most famous
implementation being the FermiNet, by David Pfau et. al [11]. Other successful implementations
are also possible and often based on a similar architecture [82, 28]. The implementation of Pfau
et. al, is more intricate than the one we bring here, but a standard Slater-Jastrow ansatz can
usually be written

ψθ(R) = eJα(R)
∑
k

ωk det{ϕk↑i (r↑j)} det{ϕ
k↓
i (r↓j)}, (5.9)

where ωk are simply weights of the sum. Note that there is not necessarily an explicit separation
between a Gaussian envelope and a determinant of polynomials, as the generalised single-particle
orbitals ϕki (rj) can be fully parametrised by the network.

In first quantisation, the evaluation of several Slater determinants according to Eq. 5.9 is
computationally expensive, but it is also possible to use neural networks in combination with
second quantisation formalism [10]. Commonly, the Slater determinants are parametrised by
the network which learn transformations that make the single-particle orbitals depend on the
configuration, called backflow transformations [83].

We opt to ensure the symmetry of particle exchange using a network architecture based on
Deep Sets [84]. Although this architecture can be used to obtain equivariant layers [16, 28], thus
ensuring antisymmetry at the architectural level, we do not follow this approach. Instead, we

65

Chapter 5. Methods and Implementations Trial Wavefunctions

utilised only its permutation invariant implementation and rely on one Slater determinant for
antisymmetry.

A permutation-invariant Deep Set consists of writing a neural network as a composition of
two functions and a pooling layer in between. We provide here a specific definition of a Deep
Set tailored to our applications, rather than a universal definition. For our case, the Deep Set
can be written as ψ(ds)

θ = ρ(Σ(ϕ)) where ϕ : Rd → RdL and ρ : RdL → R. Here, Σ represents any
pooling operation over N , such as the average, for each latent dimension. This can be written
Σ : RNdL → RdL . Moreover, Ld represents a latent dimension, and the architecture can be seen
in Fig. 5.1.

Shared Weights

Pooling

d

N

Figure 5.1: Representation of a permutational invariant Deep Set architecture. Figure inspired
by [16].

The core idea is that the pooling layer eliminates the specific particle-coordinate association,
while the shared weights could theoretically learn inter-particle correlation and encode it to the
latent space. This approach scales better than a brute-force symmetrisation in which one sums
the outputs for all permuted configurations.

Then, in our code we proceed to use this architecture as the Gaussian envelope, exactly as
in the aforementioned methods. Once again, ψ(ds)

θ (R) can be multiplied by a Slater-Jastrow or
a Padé-Slater-Jastrow factor, yielding

lnΨ
(ds)
S = ln |ψ(ds)

θ (R)|+ ln |det{Hj(ri)}| ,
lnΨ

(ds)
SJ = lnΨ

(ds)
S + Jα(R),

lnΨ
(ds)
PSJ = lnΨ

(ds)
S + Pα(R).

5.1.4 One and Two-Body Densities

One typical way to analyse many-body correlations is via the one-body density matrix
(OBDM),

ρ(r′1, r1) = N

∫
dr2 . . . drAΨ

∗(r′1, r2, . . . , rN)Ψ(r1, r2, . . . , rN),

which describes the probability amplitude of finding a particle at position r1 while another one
is at r′1. For simplicity of visualisation, we have mainly been generating profiles of the diagonal

66

Chapter 5. Methods and Implementations Computational Differentiation

of the OBDM, or the one-body density profile:

n(r1) = ρ(r1, r1) = N

∫
dr2 . . . drN |Ψ(r1, r2, . . . , rN)|2 .

These were obtained by keeping the post-training Monte Carlo sampled positions and display-
ing on an extra axis the count of how many instances fall under each bin after a discretisation
of the space. This will yield a regular histogram for a one-dimensional system or a three-
dimensional histogram for a two-dimensional system. The histogram can be normalised so that
the density profile integrates to N . This is easily done with the NumPy histogram function.
For the three-dimensional histogram, we further smoothed the plot via a Gaussian filter.

Similarly, the two-body density matrix (TBDM), is a good way to identify higher-order
correlation, and is given by

ρ(r′1, r
′
2, r1, r2) = N(N − 1)

∫
dr3 . . . drAΨ

∗(r′1, r
′
2, . . . , rN)Ψ(r1, r2, . . . , rN).

Its diagonal gives the probability of simultaneously finding two particles at these designated
positions r1, r2:

n(2)(r1, r2) = N(N − 1)

∫
dr3 . . . drN |Ψ(r1, r2, . . . , rN)|2 .

These quantities can be obtained similarly to the OBD profile, where we now bin unique
pairs of particle positions. The caveat is that, if using Cartesian coordinates, we would gain
a four-dimensional plot, impossible to visualise. However, we can proceed as [33] and use the
radial symmetry of the harmonic trap, reduce the two spatial coordinates to a radial one and
disregard the angle. For the sake of visualisation, we then replicate the profile obtained in the
four quadrants.

5.2 Computational Differentiation

The methods we employ throughout the thesis have a heavy dependence on the calculations
of differentials.

When the derivative of a function is either unknown or we prefer not to calculate it an-
alytically, there are various methods available through computational tools. We will consider
computational differentiation to encompass finite difference (FD) methods, symbolic differenti-
ation (SD), and automatic differentiation (AD). When analytical expressions are available, it is
advisable to use them rather than rely on computational derivative calculations. This approach
will not only be usually quicker but also mitigate the inherent loss of precision that comes with
other computational methods.

Each of the above three methods has its advantages and drawbacks. The following is a
brief generalisation of some of the important points. One can generally say that symbolic
differentiation is inefficient but powerful in that it gives the form of the derivative function to
the user. SD is also the best computational method when it comes to sparsity (for example,
when a Jacobian matrix is sparse).

Numerical differentiation, together with the related finite difference methods, allows for
some control over the precision versus performance trade-off. FD gives a quantification of the
precision loss and good generalisability to higher-order differentiation, yet it is dependent on an
appropriate and problem-specific choice of step size. The wrong choice leads to large round-off
errors in what is called catastrophic cancellation.

For our calculations, except in cases where analytical expressions are used, the method
of choice will be AD. AD is very fast and precise and is especially suited to gradient-based
optimisations. This is because AD is fast when dealing with partial derivatives with respect to

67

Chapter 5. Methods and Implementations Computational Differentiation

multiple inputs. AD operates by taking advantage of the computational graph that is created
when a computer composes simpler arithmetic operations to compute any function. The presence
of this composition-like structure in a computer programme enables a straightforward application
of the chain rule of partial derivatives to arrive at the final solution. To do that, of course, the
programme needs to have access to the function itself, so this method is not applicable in
situations where the function is a black box1.

5.2.1 Automatic Differentiation

Automatic differentiation exists in two variations: forward mode and reverse mode. Under-
standing this is relevant, especially to explain why our Hessian implementation is actually very
efficient. Consider a function L : Rn → Rm, where we write L(x0) = y. We will denote its
Jacobian evaluated at a point x0 in the domain as ∂xL(x0) ∈ Rm×n, or in matrix form:

∂xL(x0) =


∂x1y1 ∂x2y1 · · · ∂xny1
∂x1y2 ∂x2y2 · · · ∂xny2

...
...

. . .
...

∂x1ym ∂x2ym, · · · ∂xnym

 .

That function, when calculated in a machine, will be a result of the composition of, for
example, k simpler functions L = fk(· · · f3(f2(f1(·)))). When applying the chain rule to evaluate
the total derivative of L, it is then

∂xL(x0) =
((((

∂fk−1
fk∂fk−2

fk−1

)
· · · ∂f2f3

)
∂f1f2∂x

)
f1(x0)

)
(5.10)

=
(
∂fk−1

fk
(
∂fk−2

fk−1 · · · (∂f2f3 (∂f1f2∂xf1(x0)))
))

(5.11)

The distinction in computational order between Eq. 5.10 and Eq. 5.11 is exactly what
differentiates forward mode AD from backward mode AD. When one evaluates the computations
from inside-out in terms of the order of the compositions, this is called forward mode.

The Jacobian itself is a linear transformation and can be seen as a function ∂f : Rn → Rm.
Furthermore, the chain rule of the Jacobians is, in fact, a set of matrix multiplications. Therefore,
while being mathematically equivalent, forward and backward modes do not have the same
computational complexity in terms of floating-point operations. Which one is more efficient
depends on the problem at hand. For example, if x ∈ RN0 , f1 ∈ RN1 , . . . , fk ∈ RNk , backward
AD is typically faster if Nk > N0. If Nk < N0, forward AD is favoured [85].

From Sec. 3.3 we see that VMC will rely on several Laplacian computations, which can be
obtained via traces of Hessian matrices. When calculating elements of a Hessian, performing a
forward mode over a reverse mode AD or the other way around would both be possible paths. In
machine learning applications, however, the function we differentiate often has a wide Jacobian,
since a loss function commonly maps to a real number, L : Rn → R. That is why several AD
functions are built in reverse mode. Despite that, a Hessian calculation involves the Jacobian
of a Jacobian. Since the inner Jacobian will commonly be wide, differentiating it will be better
suit for forward mode. Then, forward-over-reverse tends to be more efficient, and this is how we
proceed.

There is of course a case to be made about memory cost. Generally speaking, forward AD
is favoured when a neural network is very deep because backward AD requires the storage of
more Jacobian matrices.

1Not in the same sense as machine learning black-box but in the sense that the computer has no access to
the instructions to be performed for the function output calculation.

68

Chapter 5. Methods and Implementations Just in Time Compilation

5.3 Just in Time Compilation

Our current work is done in the Python programming language. This choice is motivated by
numerous advantages that Python offers for scientific programming and machine learning, one of
which is flexibility, but to the detriment of speed. Although it has had significant improvements
in performance in the last years, it still falls short in comparison to purely compiled languages
like C++ and Fortran.

Python has elements of compiled and interpreted languages, and the process of running a
Python script can be broadly divided into two parts. First, the source code is compiled by
CPython into a lower-level language, bytecode. Bytecode is simply a platform-independent
representation of the code but is not yet machine code, and therefore Python is not compiled
in the traditional sense. Subsequently, there is an interpretation stage, where the bytecode is
fed to a virtual machine. This final stage includes processes such as dynamic type checking
and memory management components, along with certain features that offer flexibility but can
compromise performance.

Fortunately, with specific tools and some change in code structure, it is possible to compile
bytecode to machine code of some functions at runtime - a process called just-in-time (JIT)
compilation. JIT compiled functions can be run directly by hardware, helping with interpretation
overhead and allowing compiler optimisation and accelerated linear algebra (XLA) techniques to
take place. This is particularly valuable in scientific programming, where functions are essentially
static, often computationally costly, and must be executed countless times in a simulation.

The design choices that allow for the JIT compilation depend on the framework we use to do
so, and there are several Python options. We better explain our JAX [85] implementation in Sec.
5.4.6, together with several points that require extra care when implementing JIT compilation.

5.4 Codebase Overview

All the code work for this thesis can be found in the Github repository [86] and, as it can
be used as a Python package, a documentation page is available at [87]. The aforementioned
pages also contain instructions on how to install the package and run the code. A conceptual
representation of the codebase is illustrated in Fig. 5.2. Please note that this diagram does not
perfectly map to the repository’s modules and is intended to facilitate conceptual understanding.
For a detailed view, we refer to the documentation page. We further disclaim that all results
were generated on a Mac equipped with an M2 Pro chip and 16 GB of RAM. This machine
displayed faster running times than any of the three clusters tested.

69

Chapter 5. Methods and Implementations Codebase Overview

Models Optimisers

Hamiltonians Samplers

State

Simulation
Scripts Tests

mhlmh

ffnn ds rbmvmc adam adagradgd srrmsprop

HO
Gaussian

HO
Coulomb

NQS

Figure 5.2: Conceptual overview of the NQS codebase, which can be found at [86]. See text for
explanations.

5.4.1 Models

In the project, the term ’models’ refers to various choices of ansätze. We have implemented
essentially four variants, but only show results for 3 of them. The options are a standard
parametrised variational Monte Carlo (VMC), a restricted Boltzmann machine (RBM), a deep-
set variant of a feed-forward neural network, and a standard feed-forward neural network for
which we do not show results. All of these are implemented to represent the natural logarithm of
the absolute value of the wavefunction, for which the sign can always be retrieved with NumPy’s
function slogdet. All models can also be accompanied by a Jastrow factor or a Padé-Jastrow
factor.

5.4.2 Optimisers

Following the idea of a modular project, all opitimisers can be used with every model or
system, and five options are included: gradient descent (gd), adaptative moment estimation
(adam), root mean square propagation (rmsprop), adaptative gradient estimation (adagrad) and
stochastic reconfiguration (sr). Their individual hyperparameters can also be freely modified
via the same set_optimzier method.

It should be mentioned that the implementation of stochastic reconfiguration, when used for
multilayer networks such as dsffn and ffnn, approximates the fisher information metric by a
block diagonal matrix, as per [88], which we better explain in Sec. 5.7. We chose to continue
calling it sr to keep consistency, since the VMC and RBM models technically do not use this
approximation.

We here display the set_optimzier method, and the associated optimizer_factory.

1 def set_optimizer(self, optimizer, eta, **kwargs):
2 """
3 Set the optimization algorithm for parameter updates in the NQS simulation.
4

5 Parameters:
6 optimizer (str): The optimizer to use (e.g., ’adam’).

70

Chapter 5. Methods and Implementations Codebase Overview

7 eta (float): The learning rate.
8 **kwargs: Additional keyword arguments for the optimizer.
9

10 Raises:
11 ValueError: If an unsupported optimizer is specified."""
12 self._eta = eta
13 common_args = {
14 "params": self.wf.params,
15 "eta": eta,
16 }
17 self._optimizer = optimizer_factory(optimizer, **common_args, **kwargs)

The optimiser_factory is responsible for returning the correct class without polluting the
main NQS class.

1 from nqs.optimizers import Adagrad, Adam, Gd, RmsProp, Sr
2

3

4 def optimizer_factory(opti_type, **kwargs):
5 opti_type = opti_type.lower() if isinstance(opti_type, str) else opti_type
6

7 match opti_type:
8 case "gd":
9 return Gd(**kwargs)

10 case "adam":
11 return Adam(**kwargs)
12 case "rmsprop":
13 return RmsProp(**kwargs)
14 case "adagrad":
15 return Adagrad(**kwargs)
16 case "sr":
17 return Sr(**kwargs)
18 case _: # noqa
19 raise NotImplementedError(
20 f"No options for {opti_type}, Only the gd, adam, rmsprop, adagrad and sr

supported for now."
21)

5.4.3 Hamiltonians

The Hamiltonian class allows for flexibility in the setup of the physical problem. Any type
of particle interaction or external potential can be easily set up. Although it only contains one
child class, HarmonicOscillator, the type of interaction can be controlled and passed via the
set_hamiltonian method from the NQS class.

The class is accessed when the method local_energy is invoked by the selected sampler,
and the measurement is conducted on the wavefunction model object, which is our ansatz.

5.4.4 Samplers

The Sampler base class has as child classes Metropolis and MetropolisHastings, where
the latter implements the Langevin Metropolis-Hastings importance sampling described in Sec.
3.4.1.

The base class manages common functionalities, such as setting up the random number gen-
erator, logging, and handling the scale parameter for sampling resolution, while the child classes
perform the method-specific sampling step. The base class also commands the spawning of par-
allel but individual Markov chain walkers together with the subsequent collection of statistics
from the sampling.

It must be mentioned that our Monte Carlo samplings move all particles at the same time
instead of one at a time. Although this is more efficient in terms of random number generation

71

Chapter 5. Methods and Implementations Codebase Overview

(a large bottleneck in any Monte Carlo calculation), it impedes us from using common tricks
to speed up the determinant calculation, such as calculating the determinants via cofactors and
updating individual determinant matrix columns.

5.4.5 State

The State module combines all the pieces of the project in a large class, NQS. There, some
things can be chosen via their appropriate set methods, such as samplers, models, and optimis-
ers. Although de do not want to include all these methods extensively here, their idea can be
illustrated via the set optimser and set_wf, the latter being responsible for choosing the ansatz.

1 def set_wf(self, wf_type, nparticles, dim, **kwargs):
2 """
3 Set and initialize the wave function for the NQS simulation.
4

5 Parameters:
6 wf_type (str): The type of wave function to use.
7 nparticles (int): The number of particles in the system.
8 dim (int): The dimensionality of the system.
9 **kwargs: Additional keyword arguments for the wave function initialization.

10

11 Raises:
12 ValueError: If an invalid wave function type is provided.
13 """
14 self.N = nparticles
15 self.dim = dim
16 self._particle = kwargs.get("particle", "none")
17 common_args = {
18 "nparticles": self.N,
19 "dim": self.dim,
20 "rng": self.rng(self._seed) if self.rng else np.random.default_rng(),
21 "logger": self.logger,
22 "logger_level": "INFO",
23 "backend": self._backend,
24 }
25 specific_args = kwargs
26 self.wf = wf_factory(wf_type, **common_args, **specific_args)
27 self.nqs_type = wf_type
28 self._is_initialized_ = True

5.4.6 Backend

One of the first things to choose in the NQS class is the back-end, for which the two available
options are NumPy [89] and JAX. In the former, the analytical expressions for the gradients and
Laplacians of the ansatz are used, which enables a significant speedup in comparison to JAX
automatic differentiation (AD). However, having the analytical expressions for the gradients is
not always straightforward and can limit the great flexibility of deep networks. In our code,
using JAX as a back-end is always possible, while NumPy is only allowed for the standard VMC
and RBM ansätze, as their analytical expressions can be easily obtained beforehand.

Fortunately, JAX’s just-in-time (JIT) compilation speeds up the code considerably, especially
when implemented correctly with vectorised maps (vmaps). While we explain AD and JIT in
Sec. 5.2 and Sec. 5.3, vmaps are essentially JAX’s way of using vectorisation to gain efficiency
and readability.

Unfortunately, extracting JAX’s full power requires dealing with some “sharp bits", in the
own words of the project developers. Although we acknowledge that our code may not follow
the absolute best practices, it is still relevant to address some of these challenging aspects. For a

72

Chapter 5. Methods and Implementations Codebase Overview

deeper explanation, we highly recommend the source code and documentation of the framework
[85].

First, JAX transformations and compilations only work with functions without side effects.
This means that “jitted” functions, for example, should not modify class attributes or methods
if those are not passed as input parameters. This can seem straightforward, but is sometimes
difficult to implement when the code design is around object orientation. This requirement of
functionally pure code is the reason behind some of the unusual choices in our code, and can be
difficult to debug.

Moreover, JAX arrays are immutable and inplace updates need to be substituted from
x[idx] = y to x.at[idx].set(y). In fact, JAX functions do not deal with NumPy arrays.
Fortunately, they are automatically converted to JAX arrays with little to no overhead.

The minor overhead is the reason we were lax with our array initialisation. For best practices,
it would have been preferable to specify the type of array the code is handling from the start,
but more often than not, we opted to start with NumPy arrays and let JAX handle the rest.
This point is also relevant because we decided not to use JAX’s PRNG even when using it as a
back-end.

JAX’s RNG is significantly slower than Numpy’s defaults, and while there are very good
reasons for it, that was not relevant for how we developed our code. We instead leave PRNGs
with NumPy, use JAX only for JIT, vmaps and AD, and suffer the overhead from multiple
NumPy-to-JAX conversions. In our experience, this was still preferable to using JAX’s PRNG.

5.4.7 Parameter Class

We implement the neural nets from scratch, and without pre-built neural network modules.
Then, since we want to have a consistent structure for all the possible variational ansatz, we
decided to have a specific parameter class.

The Parameter class is initialised with a dictionary where the keys are strings representing
parameter names, and the values are the parameter data, which can be either NumPy arrays or
JAX arrays. This allows for a flexible and extensible structure to hold various types of parameter
data.

1 ParameterDataType = Union[np.ndarray, jnp.ndarray]
2

3 class Parameter:
4 def __init__(self, data: Dict[str, ParameterDataType] = None) -> None:
5 self.data = data if data is not None else {}

The class provides several methods for setting, getting, and manipulating parameter data.
The set method is particularly versatile, allowing for setting parameters using different types of
input: Replacing the entire parameter data with another Parameter instance, setting multiple
parameters using lists of names and values, updating or adding parameters using a dictionary
or setting a single parameter using a name and value pair.

1 def set(
2 self,
3 names_or_parameter: Union[
4 str, List[str], "Parameter", Dict[str, ParameterDataType]
5],
6 values: Union[ParameterDataType, List[ParameterDataType]] = None,
7) -> None:
8 # Method implementation...

Then, the get method retrieves the value of a parameter specified by name, in the optimisa-
tion step. To exemplify, a step of a gradient descent with momentum follows:

1 def step(self, params, grad_params_E):
2 for key, grad in grad_params_E.items():

73

Chapter 5. Methods and Implementations General Training Strategies

3 self.v[key] = self.gamma * self.v[key] + grad
4 params.set([key], [params.get(key) - self.eta * self.v[key]])

One of the key aspects of this class is its integration with JAX’s tree utilities, which is essential
for enabling JAX’s automatic differentiation and other optimisations. The tree_flatten and
tree_unflatten methods are implemented to allow the Parameter class to be used with JAX’s
jit, grad, and other transformations. The tree_flatten method breaks down the Parameter
object into a list of its values (leaves) and a list of keys (auxiliary data). This decomposition is
necessary for JAX to understand and manipulate the data structure during computation.

Finally, the Parameter class is registered with JAX using the register_pytree_node func-
tion. This registration tells JAX how to handle instances of the Parameter class during its
computations.

5.4.8 The Wavefunction Base Class

The Wavefunction base class is inherited by any choice of ansatz or model, allowing for
modularity. Its design ensures that common functionalities are handled in one place while
allowing specific behaviours to be defined in child classes. It, for example, controls, via abstract
class methods, the setput of the Slater determinants and the Jastrow factors regardless of the
trial function. This is because specific methods are called in the constructor of its child classes.

Very importantly, too, this class enables the setup of the appropriate backend (NumPy or
JAX), and the just-in-time compilation for the appropriate functions.

5.4.9 Simulation Scripts

The simulation scripts in this repository manage the entire simulation process. They outline
the steps for initialising models, configuring Hamiltonians, choosing and executing samplers,
carrying out optimisation, and also gathering the results. These scripts are created to be modular
and flexible, enabling easy modification of parameters and settings. This means that almost all
options can be arbitrarily combined. For example: any model can take any particle type and
use any optimiser, any sampler, and any Hamiltonian. We refer to Appendix E for a minimal
display of one of these simulation scripts.

5.5 General Training Strategies

In this section, we present a variety of implementation techniques that were crucial to achiev-
ing satisfactory results.

5.5.1 Pretraining and Regularised Potential

Throughout our implementations, we make use of the method of transfer learning. Transfer
learning consists in loading the weights of a model trained in a similar problem to accelerate
the convergence when using the network in other scenarios. More specifically, this was a crucial
step in obtaining reasonable convergence when minimising the energy of interactive systems
with multilayer network ansatz. In dimensions larger than 1, we did not manage to get stable
sampling without it, giving positions in a clearly unbounded way.

First, we pretrain the network to a supervised regression task, in which we regress the log-
probability ln(|ψ|2) of the ansatz to the log of a multivariate Gaussian with identity covariance
matrix of dimension (N ×d)× (N ×d), where N is the number of particles, and d the number of
dimensions. This is to ensure that the network at least starts with a function with a vanishing
profile for large coordinate values.

74

Chapter 5. Methods and Implementations General Training Strategies

The second stage involves either pretraining the network to the non-interactive related sys-
tem, or training in a regularised potential that converges to the true interaction potential towards
the end of the training process.

Both these second-stages consist in training the model within the standard VMC - reinforce-
ment learning framework, but the details vary based on the system. If the particle interaction
does not exhibit singularities, we pretrain the ansatz to converge to the non-interacting system.
Else, we regularise the potential, adopting a method inspired by [16]. While this regularisation
and pretraining are different techniques, the regularisation process essentially introduces the
interaction slowly and in a specific way that hopefully helps the network learn Kato’s cusp con-
dition without the need to impose a fixed Jastrow factor. This regularisation consists of using
a potential

1

rij
→ tanh(rij/r0)

rij

where r0 is a hyperparameter. The numerator in this regularisation can be any function of rij
such that f(rij) approaches 1 as rij approaches 0. More specifically, in our implementations we
add a decay rate τ to r0,

τ =

(
1

3r0

)2/T

, (5.12)

such that, at half of the training process, tanh(rij/r0) ≈ 0.97. Here, T is the total number of
training epochs, and at each iteration, we change r0(t) = r0(0) · τ t, where t is the current epoch.
When sampling the observables from the final ansatz after training is done, we simply turn off
this regularisation so that the ansatz is kept fixed.

5.5.2 Sampler Tuning

The quality of a Monte Carlo sampling is heavily influenced by the width of the distribution
that is sampled from. In our implementations, this width is simply called the scale of the Monte
Carlo method. In order to obtain an efficient sampling process, one usually aims at finding a
sample width that yields approximately 50% of accepted moves. To achieve that, we created a
tune_scale method based on the PyMC library [90], but with some minor modifications.

In the PyMC implementation, the method adjusts the proposal scale for a sampler based
on the acceptance rate, aiming for an optimal range between 20-50%. Our approach differs
by targeting an acceptance rate of 50-70%. Furthermore, our method activates only when the
acceptance rate falls outside the 30-70% range, to avoid unnecessary tuning. These target values
were determined experimentally, without a rigorous experimentation process.

The tuning process operates via a lookup table that adjusts the proposal scale according
to predefined acceptance rate thresholds. If the acceptance rate is extremely low (<0.001) or
extremely high (>0.99), we reinitialize the sampling positions and the weights of the ansatz
without stopping the training process. This decision comes from observing that such acceptance
rates indicate that the walkers have wondered into regions of impossible convergence, often due
to an ill-defined ansatz.

When tuning the sampler, some considerations must be made. One of these is the batch size
used to evaluate the acceptance rate. This batch size can be larger than the training batch size
for higher precision in the tuning phase or smaller for faster execution. Another key consideration
is whether to exit the tuning process if the optimal acceptance rate range is not met.

To address this last point, we devised two methods for the tuning process. The standard
method allows setting a maximum number of iterations for the tuning process. If the acceptance
rate does not fall within the optimal range within these iterations, the process stops. In contrast,
the infinite method continues the tuning indefinitely until the acceptance rate falls within the
desired range.

75

Chapter 5. Methods and Implementations Quantifying uncertainties

5.5.3 Clipping Gradients and Energy Values

Lastly if should be mentioned that we implemented clipping strategies in two instances to
obtain numerical stability. First, following an approach similar to [11], the local energy values
during network training are clipped according to the ℓ1 norm. Specifically, the average local
energy ⟨EL⟩ is kept only if it falls within the range ⟨EL⟩ ± 5× ⟨|Ei − ⟨EL⟩|⟩.

Another strategy that was implemented by us but not thoroughly examined was gradient
clipping. Gradient clipping consits in rescalling the gradient vectors to have a smaller norm,
while still pointing to the same direction in space. This has been shown to help with training
convergence in regions where the loss landscape has abrupt changes. Essentlially it consits in
defining a threshold ρ and redefining ∇L if ∥∇L∥ > ρ to

∇L ← ρ∇L
∥∇L∥ . (5.13)

5.5.4 Parallelisation

Good statistics of the quantities obtained via Monte Carlo simulations are heavily dependent
on how much data we are able to generate. Assuming that the simulated data represent inde-
pendent and identically distributed sub-samples of the quantity we are trying to infer, the law of
large numbers ensures that having a larger number of points will result in a better reconstruction
of the true probability distribution.

One reliable way to obtain more data for Monte Carlo simulations in a similar amount
of time is to collect samples from parallel random walkers. This means that simulations are
run in parallel and that their individual sampled values can be combined to compose a larger
collection of the final data. One important assumption for this parallelisation process is that
random walkers are unaware of each other, so the samples do not exhibit undesired correlations,
compromising the statistical significance of the computations. This requirement can be satisfied
by passing unique random seeds for the different threads of the parallel programme.

In particular, for our Python parallel sampler implementation, we used the Joblib [91] library.
The motivation for using Joblib instead of Python’s native multiprocessing module is that the
latter displayed problematic behaviour when sharing JAX objects among processes. Joblib’s
parallel function achieves embarrassingly simple parallelisation by starting separate Python
workers that execute tasks on different CPUs.

5.6 Quantifying Uncertainties

There are multiple ways to analyse the statistical uncertainty of the collected data. Most
standard methods rely on resampling techniques, which artificially generate more data by cre-
ating varied samples from the limited data set. For example, by shuffling data and resampling
it, one can achieve a finer statistical estimation of the measured quantities due to the larger
amount of data, hopefully without biasing it too much.

Conventional implementations include bootstrapping and cross-validation, better explained
in [49]. VMC calculations deal with a very large amount of data, making these approaches
computationally costly. More importantly, perhaps, these methods also do not explicitly take
into account the correlation between data points, an important feature when analysing how the
random walks evolve in configuration space. Of course, at a stationary limit, sample averages
should be time independent, but in practice we do not have this guarantee. Therefore, specifically
for VMC calculations, the blocking method is often used.

Quantities measured in a Monte Carlo sampling are the results of a set of sequential experi-
ments, {α}. The sampled values, such as the mean (µα) and variance (σ2α) of these experiments,

76

Chapter 5. Methods and Implementations Quantifying uncertainties

can therefore be studied as a time series. Here, these quantities are given by

µα =
1

N

N∑
k=i

xα,k, σ2α =
1

N

N∑
k=1

(xα,k − µα)2. (5.14)

The entire data set can be partitioned into m experiments blocks, with its m-th block having
an average µm with a sample mean variance σ2m; both can be written as

µm =
1

mN

∑
α,k

xα,k, σ2m =
σ2

N
[1 + 2

N−1∑
d=1

kd], (5.15)

where σ2 is the variance of all the data points,

σ2 =
1

mN

∑
αk

(xα,k − µm)2,

and kd is the autocorrelation function [92] between experiments separated by a distance of d in
the time series. The blocking algorithm consists of rearranging the total data set into blocks
and analysing how σ2m changes with different block sizes. When the number of blocks increases,
this variance of the average of the blocks reaches a plateau that gives information about the
correlation of the experiments. The aim is to find a distance d = |k − l| between sequential
experiments xα,k and xα,l such that experiments in the time series separated by a distance d′ > d
can be considered uncorrelated. The standard deviation provided by the blocking algorithm will
then be the asymptotic value that stabilises for this distance d. This is clear from Eq. 5.15, as
σ2m → σ2/N if kd tends to 0.

In our implementation of the blocking algorithm for the estimation of the standard deviation
of the energy, we used the systematised scheme of [93]. This method automates the ordinary
visual analysis of the time auto-correlation function devised by [94].

5.6.1 Combining Errors

We have discussed the use of parallelisation techniques in Python to produce more samples
in roughly the same time frame via parallel computing and multiple CPUs. Here, we give a
more detailed explanation of how we aggregated the errors from each independent experiment.

The empirical expected values and their variances are also random variables, and to ap-
propriately combine mean values and standard errors, we used a meta-analysis study. More
specifically, we use inverse variance weighting (IVW) [95] to aggregate the values of random
variables so that their average is weighted by the inverse of their variance.

After running n independent walkers, each will give us an empirical expectation value of
the energy En, with its associated blocking error SE(En). Then, we use IVW to combine these
values into a single overall estimate of energy Ē and its associated error SE(Ē) as follows:

Ē =

∑n
i=1wiEi∑n
i=1wi

,

with the weights determined by the inverse variance of each estimate wi = SE(Ei)−2. Then, the
standard error of the mean estimate is given by

SE(Ē) =

√
1∑n
i=1wi

.

77

Chapter 5. Methods and Implementations Kronecker-factored Approximate Curvature

5.7 Kronecker-Factored Approximate Curvature

In practical applications, particularly with the emergence of deeper and broader networks in
deep learning, calculating the complete Fisher information matrix or its quantum counterpart,
the Fubini study metric, becomes impractical. Not only is it computationally demanding to
invert the matrix Fij as required by the update rule, but storing the matrix elements also
becomes memory intensive. Indeed, in a naive approach, one must recompute and store its
values for each training iteration.

If we consider a rectangular neural network structure, in which all L layers have the same
height H, and further assuming that there are no bias vectors, the FIM should be a matrix
of size (L × H2) × (L × H2). Kronecker-factored approximate curvature (KFAC), devised by
Martens and Grosse in 2015 [88] is a technique that aims to simplify this structure in two ways.
In this brief explanation, we do not provide a derivation of the expressions, and for a detailed
proof, we refer to the original publication.

Using the notation of [29], we start by approximating the FIM by a block-diagonal F̆ ,

F̆ (θ)
W

(l)
ij W

(l′)
i′j′
≡ δll′ F (θ)W (l)

ij W
(l′)
i′j′
, (5.16)

where W (l)
ij represents a weight matrix of given layer l, and δll′ a Kronecker delta. This means

that we assume parameters from different layers of the network to be independent in terms of
the curvature of the parameter space. This turns the (L×H2)× (L×H2) matrix into L blocks
of (H ×H) matrices that can be inverted independently.

The second simplification of the KFAC method consists of writing the blocks of the ap-
proximated F̆ as Kroneker products of statistical averages of the forward activations a(i) and
backward sensitivities δ(i) of the FFN, discussed in Sec. 4.3.2. Then, it can be shown that

F̆ (θ)(l) ≈ Epθ
[
a(l)a(l−1)⊤

]
⊗ Epθ

[
δ(l)δ(l−1)⊤

]
. (5.17)

However, throughout this work, we do not implement this last simplification.

5.7.1 Trust Regions and Tikhonov Regularisation

When solving second-order optimisation problems practically, the constrained minimisation
problems of Eq. 4.5 and Eq. 4.7, discussed in Sec. 4.1.1 are often treated as analogous un-
constrained problems with associated trust regions and damping parameters, in what is called
the Tikhonov regularisation method. More specifically, consider the second-order approximation
model

M(δ) = E(θ0) +∇E(θ0)
⊤δ +

1

2
δ⊤Gδ,

where δ = θ− θ0 , and G is a matrix describing the geometry of the trust region. For example,
in Newton’s method, it is the Hessian of the objective function, and in the natural gradient
method, it is the Fisher information matrix. Following Tikhonov regularisation, the correct
update rule is given by the unconstrained minimisation,

θt+1 − θt = arg min
δ∈Rt

(
Mt +

λt
2
δ⊤G(θt)δ

)
,

where, λ is the damping term and Rt = {δ : ∥δ∥ ≤ rt}, for some radius rt, is a trust region
for which the second-order approximation is valid. Adding this damping term has the effect of
using a regularised version of the FIM, equivalent to F − λI. This is important to stabilise the
pseudo-inverse calculation of F via singular value decomposition. In our work, we have used a
diagonal shift of around λ = 10−4.

78

Chapter 5. Methods and Implementations Hyperparameter Search

In reality, choosing the correct radius of the trust region at every step is impractical, and
learning rate decay schedules have been suggested to ameliorate this difficulty [96]. For our
implementations, we proceeded by choosing the learning rate

αt = min

(
α0,

√
α1

δ⊤θ Gδθ

)
= min

(
α0,

√
α1

(F−1∇E(θ))⊤∇E(θ)

)
,

with α0 and α1 hyperparameters that require tuning. This is an idea suggested in [79], which
requires that the scheduler choice could depend on the curvature of the trust region. This choice
ensures that the learning rate is smaller when the curvature of the parameters under the metric
defined by G is large. In addition to that, we also added a momentum term of γ = 0.9 in our
implementations. Then, the update rule when implementing specifically our version of SR can
be written

vt = γvt−1 + F̆−1∇E(θ),

θt+1 = θt − αtvt,

where we denote F̆ as the block-diagonal approximation of the FIM.

5.8 Hyperparameter Search

Optimising hyperparameters is a crucial part of training machine learning models, as it
can greatly influence the quality of the model. Performing extensive brute-force searches over
the hyperparameter space is a task that is intractable on its own, as the number of possible
configurations scales exponentially. To find the best configuration for a certain model, several
techniques can be employed, the simplest being random selection over the parameter space.

Several of our initial investigations to find a good choice of model and parameters begin with
a trial-and-error process, as this carries a lower overhead in initial iterative phases of a project.
However, for more detailed and subsequent investigations, when the aim is to find the best model,
we utilised the Weights & Biases (Wandb) software [97]. This is a well-known tool for experiment
tracking and hyperparameter tuning, supporting the automation of hyperparameter searches
through Bayesian optimisation and randomised search. Parameter searches using Wandb will
hereafter be called sweeps, following the software convention.

We opted to proceed in a slightly different manner depending on the system being inves-
tigated. For the fully polarised one-dimensional fermionic system, the runs are executed rea-
sonably quickly, as we deal with a one-dimensional problem and we only gather results for up
to 6 fermions. In this scenario, when generating sweeps over the entire set of parameters, we
select several hyperparameters such as batch size, neural network architecture, learning rate,
whether to use a pretraining stage, the type of optimiser to use, whether to use regularisation,
and others.

In one-dimensional runs, we conducted three major sweeps, one for each ansatz type: Deep
Set feed-forward net (DSFFN), standard variational Monte Carlo (VMC), and restricted Boltz-
mann machines (RBM). Here, the sweeps include uniform random selection over the number of
particles and interaction strength. This affects the energy to which we are converging, but the
software enables filtering runs afterward, extracting averages for specific combinations of number
of particles and interaction strength. The large number of sweeps ensures a fair representation
of the hyperparameters in a uniform search. For instance, we have roughly the same number
of runs using stochastic reconfiguration and Adam as optimisers for two, four, and six particles
alike.

When dealing with two-dimensional quantum dots, the additional dimension and the in-
creased number of particles make the computations more expensive, so we adopted a different

79

Chapter 5. Methods and Implementations Hyperparameter Search

approach. Here, we explicitly separate the investigation into exploration and exploitation phases.
The exploration phase involves performing sweeps over hyperparameters for several short runs
(with a small number of epochs and batch sizes for the Monte Carlo averages). To do this
efficiently, we used a random Bayesian optimisation search instead of a uniform random search.

Bayesian optimisation is an efficient strategy for hyperparameter tuning, especially when the
evaluation of configurations is expensive, or there are simply too many configurations to try [98],
which is often the case with deep learning models. Bayesian optimisation works by building a
probabilistic model (typically a Gaussian process) of the objective function and using information
of previous parameter choices to select the most promising hyperparameters to evaluate next.

After these short sweeps, we select the hyperparameters from which we want to collect
statistics. This stage requires a modification of how we separate the sweeps. This is because, in
Bayesian optimisation, we must specify the metric to be minimised beforehand. If we include
configurations with varying numbers of particles in a single Bayesian sweep and use the expected
energy value as the objective function, systems with fewer particles will be favored because they
have lower energy. One option to circumvent this could be to guide the Bayesian search to
minimise the variance of the energy instead. Nevertheless, even though variance optimisation
has an absolute target (0 at the ground state), larger systems are intrinsically harder to train
because of multiparticle interactions and correlations. Consequently, simpler systems would be
selected more frequently.

For two-dimensional systems, we opted to conduct separate Bayesian sweeps for each number
of particles. Furthermore, we only perform sweeps for a harmonic trap frequency of ω = 1, in the
hope that the best model will be able to generalise well for different frequencies in subsequent
simulations.

80

Part III

Results and Discussion

81

Chapter 6

One-dimensional trapped spinless fermions

We now investigate a series of results for the one-dimensional trapped spinless fermions with
Gaussian interaction. Here, all fermions are constrained to have spin in the same polarisation.
A better description of the physics of the problem is given in 2.6.

6.1 Initial Comparisons

We begin by demonstrating in Fig. 7.1 that all three main trial wavefunctions discussed
in Sec. 5.1 can very quickly converge to yield the ground-state of the non-interactive system.
This serves as a valuable reference point for the code. These results were obtained without any
hyperparameter search or addition of a correlation factor, showing that it is a fairly easy result
to obtain. In these experiments, we used the Adam optimiser with learning rate α = 0.01 ∗ c
for all models, where c is a scaling factor used both for the Metropolis step and for the learning
rates, and equates to 1/

√
N · d. All results hereafter will use a Metropolis step of 0.1/

√
N · d as

this was shown to be optimal.

0 100 200 300 400 500 600

Epochs

5

10

15

20

25

E
n
e
r
g
y

N=2

N=4

N=6

dsffn

rbm

vmc

Figure 6.1: Energy convergence curve for the non-interactive one-dimensional fully polarised
fermionic system. In black dotted line, the analytical ground-state energies are marked. The
models are Deep Set feed-forward network (DSFFN), restricted Boltzmann machine (RBM) and
a standard variational Monte Carlo (VMC). Here we used Adam with learning rate of 0.01 and
Metropolis sampling.

To check if reaching the ground-state energy results in an accurate wavefunction represen-
tation, one can generate a plot of the wavefunction. This is especially possible in the one-
dimensional two-particle scenario, where the positions of each particle can be used as axes and

82

Chapter 6. One-dimensional trapped spinless fermions Initial Comparisons

the function value can be represented by a colorbar, as in Fig. 6.2. The values were obtained
by uniformly sampling the positions for the particles and evaluating the output of a trained
model, together with its sign. Fig. 6.2 further serves to validate that despite working with ln |ψ|
throughout the entire sampling and training process, we can recover the sign of the wavefunction.
The profile shown is a classic fermionic representation, with a node region at X1 = X2 around
which the wavefunction values are mirrored, except for a flip in sign. This is a consequence of
the Pauli exclusion principle and the fact that we enforce the fermions to be polarised with the
same spin.

−3 −2 −1 0 1 2 3

X1

−3

−2

−1

0

1

2

3

X
2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

Figure 6.2: Two particle wavefunction for a one-dimensional fermionic ground-state. A clear
fermionic nodal structure at X1 = X2 can be observed.

We can compare the quality of our models and techniques without extensive parameter
investigation for a small but interacting system of two particles (N = 2). At this stage, the results
shown are merely investigations and are not fine-tuned in any way. In Fig. 6.3, we compare our
models with four values of interaction strength. We begin with an attractive regime of V0 = −20
and increase until we obtain a repulsive interaction V0 = 20. In all interactive polarised fermionic
systems, we limit ourselves to dealing with an interaction range of σ0 = 0.5. The energy values
displayed are a rolling average over ten epochs for better visuals. If, for example, 600 epochs
were used, only 60 points make up the plot.

Furthermore, Fig. 6.3 contains Hartree-Fock and CI energies, obtained with the code avail-
able from [28]. It should be mentioned that the basis for the CI calculations was by no means
a large one, with only 20 harmonic oscillator modes, and the Hartree-Fock calculations were
obtained via N integro-differential equations, where we iterate over the entire spatial grid com-
puting the density and updating the Hamiltonian matrix at each step. Then, approximate
eigenvalues are obtained via the Rayleigh-Ritz method.

All results shown in Fig. 6.3 used a block-diagonal approximation of the stochastic reconfig-
uration (SR) update rule with learning rate of 10−3. For all uses of this SR approximation, we
also added a diagonal shift of λ = 10−4 and a trust region for the update, described in Sec. 5.7.
The convergence curves have large deviations because small batch sizes were used. This means
that only 500 MC proposals were sampled to collect the averages at each step. Consequently,
the energy estimations fluctuate, and the gradient update, which is based on ∇⟨EL⟩, also loses
stability.

83

Chapter 6. One-dimensional trapped spinless fermions Initial Comparisons

0 100 200 300 400 500 600

Epochs

−2

−1

0

1

2

E
n
e
r
g
y

V0 = -20

0 100 200 300 400 500 600

Epochs

0.6

0.8

1.0

1.2

1.4

E
n
e
r
g
y

V0 = -10

0 100 200 300 400 500 600

Epochs

2.4

2.5

2.6

2.7

2.8

2.9

E
n
e
r
g
y

V0 = 10

0 100 200 300 400 500 600

Epochs

2.6

2.8

3.0

3.2

3.4

3.6

3.8

E
n
e
r
g
y

V0 = 20

dsffn rbm vmc HF CI

Figure 6.3: Energy convergence curve for the two particle (N = 2) interactive problem of one-
dimensional fully polarised fermions. The shaded area marks a 95% confidence interval. In black
dotted line, one can see Hartree-Fock and CI reference energies. None of the models used were
fine-tuned, and the optimiser sheme was the stochastic reconfiguration method with a block-
diagonal approximation.

Still with regard to Fig. 6.3, the Deep Set model seems to outperform the other two, especially
in the attractive regime. Although this could be attributed to a larger expressive power or more
careful enforcement of antisymmetry, special mention must be credited to the pretraining stage.
As detailed in Sec. 5.5.1, for feedforward networks, convergence for dimensions greater than one
was only achieved by pre-training the ansatz in a supervised manner. Specifically, we fit the log
probability of the ansatz to that of a multivariate Gaussian. It is known that in the attractive
regime, the one-dimensional spinless fermions exhibit a density profile similar to non-interacting
bosons [99], resulting in a density profile that closely resembles a Gaussian. This, together with
a larger and expressive power and flexibility, can explain why the DSFFN performs better than
the other models in the attractive regime.

6.1.1 Correlation Factor

A last analysis without extensive parameter experimentation can be seen in Fig. 6.4, where
we select the deep set FFN ansatz of figure Fig. 6.3 for the same physical systems and compare
convergence curves with and without the inclusion of the Jastrow factor. We see that, without
the Jastrow factor, the model is capable of oscillating around the energy levels given by the
Hartree-Fock calculations. Indeed, this variational ansatz uses a Gaussian envelope only with
the determinant of Hermite polynomials, then approximating a single Slater determinant. Only
with the introduction of the Jastrow factor can the energy values achieved go significantly lower
than the HF approximation.

This observation is interesting. In principle, the universal approximation theorem guarantees
that the neural network part of the ansatz can approximate any complex correlation factor which

84

Chapter 6. One-dimensional trapped spinless fermions Hyperparameter Search

is not captured by the HF approximation. Although this might indeed be possible, the explicit
addition of a correlation factor to the ansatz was what significantly enabled energies lower than
HF. However, the statistics in Fig. 6.4 are lacking, and we must examine the values and errors
of larger Monte Carlo samples to be able to make this affirmation.

0 100 200 300 400 500 600

Epochs

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

E
n
e
r
g
y

V0 = -20

0 100 200 300 400 500 600

Epochs

0.6

0.8

1.0

1.2

1.4

E
n
e
r
g
y

V0 = -10

0 100 200 300 400 500 600

Epochs

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

E
n
e
r
g
y

V0 = 10

0 100 200 300 400 500 600

Epochs

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

E
n
e
r
g
y

V0 = 20

No Jastrow Jastrow HF CI

Figure 6.4: Comparison between energy convergence curves for two particle (N = 2) for Deep
Set feed-forward network with and without Jastrow factor. We an approximate stochastic recon-
figuration optimiser, and the plot is displayer with a running average of 10 epochs. The shaded
are represents a 95% confidence interval.

6.2 Hyperparameter Search

We then proceed to more thorough investigations via hyperparameter sweep searches. For
each of our ansatz, we performed a sweep of approximately 300 configurations. This means that
300 sets of variational training were done, each with a random combination of options such as
batch size, learning rate (here called “Eta”), maximum training epochs, network architecture, and
more. Figure 6.5 displays the sweep for the Deep Set ansatz, which involved 351 hyperparameter
configurations. Analogous searches for VMC and RBM ansätze can be seen in the appendix F.

85

Chapter 6. One-dimensional trapped spinless fermions Hyperparameter Search

Figure 6.5: Sweep over 351 hyperparameters for the standard DSFNN ansatz, from which the
results shall be aggregated from. Table 6.1 displays the different architectures experimented,
here simply marked as “arch”.

Table 6.1: Deep Set architectures Overview for sweep, for the sweep performed in Fig. 6.5. The
values missing in the architecture order were discarded for frequent non-convergence behaviour.
The latend dimension Ld is chosen independently.

Architecture Nr. Activations Layer Sizes

ϕ ρ ϕ Pooling ρ

1 GELU × 4 GELU, linear 7, 5, 3, Ld Avg Ld, 3, 1
2 GELU × 5 GELU × 3, linear 10, 7, 5, 3, Ld Avg Ld, 6, 4, 2, 1
4 GELU × 5 GELU × 2, linear 9, 7, 5, 3, Ld Avg Ld, 5, 3, 1
5 GELU × 5 GELU × 2, linear 14, 9, 7, 5, Ld Avg Ld, 5, 3, 1
7 GELU × 5 GELU × 2, linear 12, 9, 7, 5, Ld Avg Ld, 6, 4, 1

6.2.1 Optimisers

From the sweep of Fig. 6.5, several results can be aggregated and averages can be taken for
certain configurations. For instance, Fig. 6.6 isolates the case where the interaction strength is
V0 and, for a different number of particles, extracts the average energy values for the different
choices of optimisers. The figure suggests that among the optimisers evaluated, the stochastic
reconfiguration variant consistently outperformed the others, significantly contributing to a lower
average value across more than 300 different parameter settings and different number of particles.
Although we show only attractive interactions of V0 = −20, the same was observed for repulsive
interactions. This motivated the choice of the SR optimiser for all the following results. AdaGrad
was consistently the worst optimiser tested, at least for the parameters used.

86

Chapter 6. One-dimensional trapped spinless fermions Hyperparameter Search

0 500 1000

Epochs

−4

−3

−2

−1

0

1

2

3
E
n
e
r
g
y

V0 = −20, N = 2

0 500 1000

Epochs

−15

−10

−5

0

5

10

15

E
n
e
r
g
y

V0 = −20, N = 4

0 500 1000

Epochs

−30

−20

−10

0

10

20

E
n
e
r
g
y

V0 = −20, N = 6

Adam RMSProp AdaGrad SR HF CI

Figure 6.6: Training energy averages and standard deviations for the aggregated values of the
hyperparameter search of Fig. 6.6. Results are displayed for two, four and six particles with
interaction V0 = −20. Here, the shaded are is not the confidence interval, but the minimum and
maximum observed in the parameter search.

6.2.2 Importance Sampling

Another choice that can be investigated from 6.5 is how the expected energy value is affected
by the use of importance sampling, discussed in Sec. 3.4.1. Figure 6.7 compares this for different
number of particles and the extreme or the interaction strengths, both attractive and repulsive.

0 200 400 600 800 1000 1200

Epoch

5

10

15

20

25

30

35

E
n
e
r
g
y

V0 = 20

0 200 400 600 800 1000 1200

Epoch

−25

−20

−15

−10

−5

0

E
n
e
r
g
y

V0 = −20

N = 2 N = 4 N = 6 Metro LangevinMetro

Figure 6.7: Comparison of the averaged values over all 321 runs of the sweep shown in figure
Fig. 6.5 aggregated by number of partciles, interaction stren, rolling window of 20. Errorbars
are not included. Here, “LagevinMetro” depicts importance sampling.

There is a notable gap regarding whether the choice of importance sampling will, on average,
produce better results, as illustrated in Fig. 6.7. This gap seems to depend on the character
of the interaction, where the attractive regime favoured importance sampling over the regular
Metropolis algorithm. Although it is challenging to speculate on the exact cause, one potential
explanation is the width of the distribution we aim to approximate. In the attractive regime,
the distribution tends to be more localised, making standard sampling techniques less efficient.
Consequently, for broader distributions, various sampling methods might perform equally well.
However, when greater efficiency is needed, importance sampling proved to be more effective.

87

Chapter 6. One-dimensional trapped spinless fermions Energy Components

Figure 6.8: Average runtime comparison of the Langevin Metropolis (importance sampling) and
the regular Metropolis Makov chain Monte Carlo over 321 randomised runs. The line in black
depicts the standard error of the mean.

Despite the importance sampling technique displaying some advantage over a regular Metropo-
lis Sampling, time complexity must be taken into account. On that note, Fig. 6.8 shows the
average run-time for all configurations displayed in Fig. 6.5. Not all averages include the same
batch size or number of training epochs; however, these seem to be equally distributed between
sampler options. Figure 6.5 motivates us not to use importance sampling as a method through-
out the remainder of this study. There is approximately a threefold discrepancy between average
runtimes, and the difference in minimised energy value did not seem to justify its use. The small
difference in energy is further supported by [33]. Although importance sampling has been shown
to be necessary for the use of diffusion Monte Carlo [41], its benefits may not be as significant
for VMC.

What explains at least part of the discrepancy in computational time is the need to calculate
the drift force, F = 2∇ ln |ψ|, and the ratio of Green’s functions, as displayed in Eq. 3.24
and Eq. 3.25. Although this alone should not have an effect as large as observed, one specific
point must be mentioned. For implementation reasons, and to make the Langevin-Metropolis
method general to all ansätze, the calculation of the drift force required reshape manipulation
of the input position vector. We tried to mitigate this, with no success. As mentioned in 5.4.6,
JAX arrays are supposed to be static, so we strongly believe that a big part of the difference in
computational time is due to JAX not being able to fully pre-compile this calculation.

6.3 Energy Components

Now, instead of displaying the average results in a series of configurations, we selected pa-
rameters based on the ranges that gave good results from the hyperparameter search of Sec. 6.2.
For the results that follow, some common choices were made. All results displayed hereafter
were performed with trial functions that included a Jastrow factor, and the optimiser of choice
was always stochastic reconfiguration. These calculations involve longer training processes and
more extensive sampling.

More specifically, Fig. 6.9 shows the distribution of the energy components as a function of
the interaction strength for all ansätze and different numbers of particles. The different trial
functions agreed reasonably well in terms of energy values, and a better comparison can be seen
in Table 6.2.

The energy curves in Fig. 6.9 are expected, showing that the energy scale varies with the
particle count, while the ratios between the energy components mirror the findings of [28], from
which we extract some analysis.

88

Chapter 6. One-dimensional trapped spinless fermions Energy Components

First, the total energy E increases when going from an attractive to a repulsive regime.
The potential energy increases with the strength of the interaction, but the apparent plateau,
together with a decrease in kinetic energy, indicates fermion localisation. This point will be
discussed in the analysis of the density profiles.

When the interaction is extremely attractive, the particles are concentrated in the centre of
the trap. In this scenario, the absolute magnitude of the interaction surpasses that of the kinetic
energy, and there is almost a cancelation of the trap potential. As also achieved by [28], in some
instances we observe ⟨K⟩ ≤ ⟨Vint⟩, which is a sign of Wigner crystallisation [100].

−20 −10 0 10 20

V0

−8

−6

−4

−2

0

2

4

E
n
e
r
g
y

〈K̂〉

〈V̂trap〉

〈V̂int〉

E

N = 2

−20 −10 0 10 20

V0

−30

−20

−10

0

10

20
〈K̂〉

〈V̂trap〉

〈V̂int〉

E

N = 4

vmc

rbm

dsffn

−20 −10 0 10 20

V0

−80

−60

−40

−20

0

20

40
〈K̂〉

〈V̂trap〉

〈V̂int〉

E

N = 6

Figure 6.9: Energy components as a function of the interaction strength, V0, for different number
of particles and trial wavefunctions. All wavefunctions were multiplied by a Jastrow factor. The
values were obtained with after 1024 Monte Carlo samples, SR optimiser and 1500 epochs of
training.

In Table 6.2 we also show the ratio between kinetic energy and the sum of potential energies
for a four-particle system. As dictated by the virial theorem, in the non-interacting case, ⟨E⟩ =
2⟨K̂⟩ = 2⟨V̂trap⟩. This is verified with the fraction of the kinetic and potential energies resulting
in 1. Again, we note an acceptable yet not perfect agreement between the different models.

Ansatz V0 E ⟨K̂⟩ ⟨V̂trap⟩ ⟨V̂int⟩ ⟨K̂⟩
⟨V̂trap⟩+⟨V̂int⟩

DSFFN + SJ

-20 -13.372(3) 22.16(1) 0.8303(5) -36.364(9) -0.624
-10 1.1421(9) 9.941(5) 1.797(1) -10.595(4) -1.130
0 8.00028(6) 4.000(2) 4.000(2) 0(0) 1.000
10 11.009(1) 2.906(2) 5.921(2) 2.182(2) 0.357
20 13.244(8) 3.021(8) 6.998(3) 3.224(3) 0.296

RBM + SJ

-20 -13.294(3) 22.36(1) 0.9751(8) -36.63(1) -0.627
-10 1.145(1) 9.983(5) 1.772(1) -10.610(4) -1.13
0 8.00123(8) 3.998(2) 4.004(2) 0(0) 0.999
10 11.101(1) 2.684(1) 6.089(3) 2.328(2) 0.319
20 13.025(2) 2.271(1) 7.476(3) 3.278(3) 0.211

VMC + SJ

-20 -13.360(3) 22.261(9) 0.8186(4) -36.439(9) -0.625
-10 1.1452(9) 9.978(5) 1.781(1) -10.614(4) -1.130
0 8.000028(4) 3.998(2) 4.002(2) 0(0) 0.999
10 11.0009(7) 3.161(2) 5.674(2) 2.166(2) 0.403
20 12.650(1) 3.222(2) 6.647(2) 2.781(3) 0.321

Table 6.2: A more detailed display of the energy components of Fig. 6.9, for four particles.

89

Chapter 6. One-dimensional trapped spinless fermions One-body Densities

6.4 One-Body Densities

In terms of one-body density profile, Fig. 6.10 shows in isolation the two-particle case for
all ansätze and different interactions, and Fig. 6.11 shows the other cases, up to six particles.
From these figures, it becomes clear that, for both an attractive regime and a larger number of
particles, getting the models to agree becomes challenging. However, even when the methods
disagree, some qualitative points can be addressed. Even for a different number of particles, once
the interaction strength is set, the width of the distribution remains the same. Furthermore,
the peak of the distributions becomes taller with an increase in the number of particles as n(x)
must integrate to N , but with the system constrained by the trap.

Importantly, as analysed in terms of energy components, the attractive regime demonstrates
a peak at the centre of the trap, in a process corresponding to the bosonization of polarised
fermions [99]. On the other extreme, the repulsive interaction results in clear peaks or fringes.
The number of peaks corresponds to the number of particles in the system and should, in
principle, be symmetric around the origin.

−2.5 0.0 2.5

Position, x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

n
(x

)

N = 2N = 2N = 2

V0 = −20

−2.5 0.0 2.5

Position, x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
V0 = −10

−2.5 0.0 2.5

Position, x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
V0 = 0

VMC

RBM

DSFFN

−2.5 0.0 2.5

Position, x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
V0 = 10

−2.5 0.0 2.5

Position, x

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
V0 = 20

Figure 6.10: Density profiles n(x) for two particles at different interaction strengths and for
different trial functions, all accompanied by a Jastrow factor. The profile was based on 224

samples, with average energies displayed in Tab. 6.3

As shown in Fig. 6.11, the peaks become more pronounced with a stronger interaction,
although not all models follow the symmetry constraint well. The VMC function appears to
perform the best in this regard. Conversely, the RBM shows significant asymmetry with stronger
repulsive interactions and fails to capture the fringes for three interaction strengths in the two-
particle scenario. We will explore how this relates to the energy value in Sec. 6.5, but we can
already discuss this behaviour with respect to the symmetry of the ansätze.

Both mathematically and due to the trap symmetry, the probability density of the antisym-
metric wavefunction should be symmetric. Although this seems to be approximately the case in
Fig. 6.11 it is certainly not true for all the examples shown. One cause, apart from us not being
in the true ground-state, is that the initial ansatz does not perfectly adhere to any symmetry.
Due to the potential variations in weights and biases for different particle inputs, the RBM,
the VMC Gaussian ansatz, or the Jastrow factor are not ideally symmetric. For instance, even
when the Deep Set ensures symmetry and is combined with a determinant that is inherently
antisymmetric, the Jastrow factor has the potential to negate this symmetry. We expected this
behaviour to be not as dramatic for the Deep Set, but it seems like the VMC was the best in
that regard.

90

Chapter 6. One-dimensional trapped spinless fermions Overall Energy Comparison

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

n
(x

)

N = 3N = 3N = 3

V0 = −20

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0
V0 = −10

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0
V0 = 0

VMC

RBM

DSFFN

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0
V0 = 10

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0
V0 = 20

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

n
(x

)

N = 4N = 4N = 4

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

n
(x

)

N = 5N = 5N = 5

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

n
(x

)

N = 6N = 6N = 6

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

−2.5 0.0 2.5

Position, x

0.0

0.5

1.0

1.5

2.0

Figure 6.11: Density profiles for different ansätze, after 224 MC samples. All ansatze were
multiplied by a Jastrow factor, and the sampled energies can be found in Tab. 6.3

6.5 Overall Energy Comparison

Figure 6.12 shows that regardless of the model, the energy obtained is lower than the Hartree-
Fock energy for every interaction V0. While this figure shows only a two, four and six-particle
case, Tab. 6.3 reveals that this is equally true for other cases. Moreover, there is a clear ease in
energy minimisation for the attractive regime. Apart from that, to gauge which models yield the
lowest average energy, we can look at the average energy value over all particles and interactions.

91

Chapter 6. One-dimensional trapped spinless fermions Time Scaling Analysis

−20 −10 0 10 20

V0

−0.4

−0.3

−0.2

−0.1

0.0
E
−
E
h
f

N = 2

vmc

rbm

dsffn

−20 −10 0 10 20

V0

−0.6

−0.4

−0.2

0.0

0.2

N = 4

−20 −10 0 10 20

V0

−0.6

−0.4

−0.2

0.0

N = 6

Figure 6.12: Difference between the energy sampled and the HF energy versus interaction
strength V0. Error bars are included but too small to see. For a complete overview of the
energies for other number of particles, 6.3. All values are result of 1024 samples after 1500
epochs of training with Jastrow factor included.

We further notice that there is a clear correlation between the lowest energy values obtained
in Tab. 6.3 and a density profile that is closer to what is expected in 6.11. For instance, the
RBM failed to replicate the expected fringes for three particles in the repulsive interaction.
Then, even though the density profile was symmetrical, resembling a Gaussian shape, we see
that the energy values for the other two models were lower in that regime. Furthermore, both
the RBM and DSFFN model displayed some asymmetry in the five-particle attractive regime,
and that is reflected in a significantly higher energy value in comparison to the VMC.

After discussing the results for the two-dimensional quantum dots, we will offer a broader
assessment of the quality of the proposed ansätze and provide possible explanations for the
observed differences. For the moment, it is sufficient to highlight the final average energies
presented in Tab. 6.3 indicate that the VMC model performs the best, by a reasonable margin.
Behind it is the DSFFN, and last, the RBM. In comparison with the small-basis CI calculations,
we observe that in certain cases we can obtain a ground state energy that is lower than theirs.
Although this phenomenon is observed in three instances, we focus solely on the validity of
the three-particle case with interaction V0 = −20. This selection is due to the small basis CI
occasionally showing energy values lower than those from HF calculations. The HF and CI
values are sourced from the code provided by [28], with the HF equations being solved using
integro-differential equations, and this behaviour is not fully understood.

6.6 Time Scaling Analysis

We now discuss how the presented methods scale with the number of particles. In this
scenario, a theoretical analysis is a particular challenge. First, not all methods are or should
be trained equally. For example, the Deep Set implementation requires a pre-training stage, as
described in 5.5.1, where we regress to a Gaussian function. This can be done only once for
every architecture and reused for any other problem where the number of particles is the same.
For this reason, pre-training timing is not included in the following analysis.

Additionally, the number of parameters in each model is substantially different and that in
should change the required number of training steps for convergence. Nevertheless, to make a
fair assessment, we show the wall time for three individual training and sampling steps for each
ansatz where we consistently used 220 = 1048576 samples, with 600 training epochs and a batch
size of 300 samples. Although the training and batch sizes used here are smaller than those
typically used to achieve optimal results, our focus is to illustrate the scaling rather than the
absolute values. These averages as a function of the number of particles can be seen in Fig.
6.13, where we show measurements for both the SR and Adam optimisers.

92

Chapter 6. One-dimensional trapped spinless fermions Time Scaling Analysis

N V0 DSFFN + SJ RBM + SJ VMC + SJ HF [28] CI [28]

2

-20 -2.289(1) -2.275(2) -2.290(1) -1.891464 -2.4246
-10 0.6230(5) 0.6329(6) 0.6334(6) 0.813691 0.5991
0 2.00082(5) 2.000023(7) 2.0000000(7) 2.000000
10 2.4401(2) 2.4705(4) 2.4545(3) 2.504193 2.4256
20 2.6396(3) 2.7258(7) 2.6832(5) 2.764479 2.6057

3

-20 -7.172(2) -6.51(2) -7.249(2) -6.764263 -7.0593
-10 0.7709(8) 1.014(8) 0.7645(7) 1.016808 0.7300
0 4.50211(8) 4.589(2) 4.500016(6) 4.500000
10 5.9627(6) 6.020(1) 5.9533(4) 6.061344 5.8781
20 6.760(1) 6.883(2) 6.7106(7) 6.887364 6.5153

4

20 13.244(8) 13.025(2) 12.650(1) 12.947469 12.3408
10 11.009(1) 11.101(1) 11.0009(7) 11.180564 10.8916
0 8.00028(6) 8.00123(8) 8.000028(4) 8.000001

-10 1.1421(9) 1.145(1) 1.1452(9) 1.426522 1.1113
-20 -13.372(3) -13.294(3) -13.360(3) -12.812753 -12.1935

5

-20 -19.633(4) -19.815(5) -20.065(3) -19.428348 -17.3300
-10 1.870(1) 1.912(1) 1.923(1) 2.175499 1.8551
0 12.50157(8) 12.4975(1) 12.5004177(5) 12.5000
10 17.563(1) 17.645(2) 17.560(1) 17.8484 17.4648
20 21.44(1) 21.033(3) 20.515(3) 20.9826 20.1357

6

-20 -26.855(4) -26.805(5) -26.870(4) -26.2777 -
-10 3.086(1) 3.094(2) 3.237(2) 3.335750
0 18.00015(4) 18.0087(2) 18.0033(1) 18.0000
10 25.802(3) 25.773(2) 25.671(2) 26.040932
20 30.557(4) 31.125(5) 30.316(5) 30.9932

Average 4.8237332 4.87986612 4.7355 4.9928

Table 6.3: Collection of results for different number of particles, interaction regimes and trial
functions. All runs were performed with SR and 224 samples, with 1500 epochs of training.
All ansätze contained a Jastrow factor. The missing values were not included in the study of
reference.

2 4 6 8 10 12 14

Number of particles

0

50

100

150

200

250

300

350

400

T
i
m
e

(
s
)

VMC

2 4 6 8 10 12 14

Number of particles

0

50

100

150

200

250

300

350

400

T
i
m
e

(
s
)

RBM

Adam training

SR training

Sampling time

2 4 6 8 10 12 14

Number of particles

0

50

100

150

200

250

300

350

400

T
i
m
e

(
s
)

DSFFN

Figure 6.13: Wall time scaling in seconds as a function of number of particles, up to 14 electrons.
We display separately the time for sampling and training, where the final wall time is their sum.

93

Chapter 6. One-dimensional trapped spinless fermions Time Scaling Analysis

We should also mention that the sampling time does not depend on the optimiser, which
is why only one common curve is displayed in Fig. 6.13. As expected, the SR method scales
worse than Adam, from the costly requirement of inverting the approximate FIM at every epoch,
together with the computation of the matrix elements.

To examine scaling estimations, we present polynomial and exponential fits of the wall time
scaling in Tab 6.4. Furthermore, for each type of fit, we analyse the effects of constraining the
proportionality factor to a constant value, a = 0.5. The analysis of the unconstrained coefficient
reveals that the choice of optimiser, whether for the exponential or polynomial fit, does not
significantly affect the order of scaling but rather impacts a constant factor.

Theoretically, the SR in its brute-force implementation does not scale in the same order as
Adam, and it is hard to say if the difference of around 0.5 for the constrained polynomial fit is
expected. While Adam’s time complexity is O(Nθ) in time and space, with Nθ the number of
parameters, SR involves a matrix inversion time complexity (O(N3

θ)) and takes O(N2
θ) in space.

Our block diagonal approximation of the FIM indeed reduces the time and space complexities,
but there are still (smaller) matrix inversions in place, as discussed in Sec. 5.7. It might be the
case that some precompilation from JAX enables optimisations to take place.

If we accept the polynomial constant of a = 0.5, despite a worse R2 score, all the methods
follow a polynomial degree scaling between 2 and 3, with DSFFN being the worst and VMC the
fastest as expected. A better assessment would surely require us to go beyond the 14 particles
used.

Contrary to the DSFFN, the RBM and VMC do not require backpropagation under several
compositions of non-linear activation functions. Also, the number of parameters are different.
The VMC scales as N · d with particles N and dimensions d, while the RBM scales as N · d ·
(1 +H) +H, where H is the number of hidden nodes. For the choice of feed-forward network,
the analysis is more complicated as the number of nodes changes for different layers. For timing
purposes, we used architecture one from Tab. 6.1, which yielded good results with around
7d+L2

d+8Ld+68 parameters, where Ld is the size of the latent dimension, often between four
and ten.

Table 6.4: Polynomial and exponential fits of time scaling vs. Number of Particles. The leftmost
fits do not constrain any coefficients, while the leftmost fits constrains a = 0.5.

Ansatz Opt. Poly. (aN b) Exp. (aeNb) Poly. (0.5N b) Exp. (0.5eNb)

a b R2 a b R2 b R2 b R2

VMC Adam 0.03 3.15 0.96 2.89 0.27 0.99 2.05 0.91 0.40 0.92
SR 0.13 3.01 0.99 8.09 0.27 0.98 2.48 0.97 0.48 0.84

RBM Adam 0.07 2.85 0.96 3.93 0.25 0.99 2.07 0.93 0.40 0.88
SR 0.18 2.90 1.00 9.14 0.27 0.99 2.49 0.99 0.48 0.83

DSFFN Adam 0.17 2.53 0.93 5.29 0.24 0.98 2.10 0.92 0.41 0.79
SR 0.43 2.59 0.97 14.37 0.24 0.97 2.52 0.97 0.48 0.73

94

Chapter 7

Two-dimensional Quantum Dots

We now present a series of results gathered for the two-dimensional trapped fermionic system
in closed-shell configuration, also known as quantum dots. A better description of the physics
of this problem is given in Sec. 2.6.

7.1 Initial Comparisons

0 100 200 300 400 500 600

100

101

ln
(
E
n
e
r
g
y
)

N=2

N=6

N=12

ω = 0.1

0 100 200 300 400 500 600

100

101

ln
(
E
n
e
r
g
y
)

N=2

N=6

N=12

ω = 0.28

0 100 200 300 400 500 600

Epochs

100

101

ln
(
E
n
e
r
g
y
)

N=2

N=6

N=12

ω = 0.5

0 100 200 300 400 500 600

Epochs

101

ln
(
E
n
e
r
g
y
)

N=2

N=6

N=12

ω = 1.0

vmc rbm dsffn Analytical

Figure 7.1: Logarithmic energy convergence curve for the non-interactive problem of two-
dimensional quantum dots. In black dotted line, the analytical ground state energy is marked.
The three displayed models are deep set FFN (“dsffn”), restricted Boltzmann machine (“rbm”)
and a standard variational Monte Carlo (“vmc”). Except for the Deep Set, Adam optimizer was
used. The RBM line is hard to see as the RBM is initialised very close to the analytical solution.

We again start by showing in Fig. 7.1 that any of the models can obtain the ground state for
different frequencies. We show four values of frequency, which will be used throughout the rest
of the study, and we use different models and numbers of particles. Similarly to the case of the
non-interacting, one-dimensional spinless fermions, we see that this task is reasonably simple,

95

Chapter 7. Two-dimensional Quantum Dots Hyperparameter search

as no fine-tuning or Jastrow factors were used. We display the energy values on a logarithmic
scale for the ease of comparison between energies of systems with different numbers of particles.

7.2 Hyperparameter Search

In a manner similar to the one-dimensional scenario, we performed a set of hyperparameter
optimisations for each of the four particle numbers tested, as detailed in 5.8. To avoid repetition,
the individual results of these configuration sweeps are not shown, but they are comparable to
what is presented in 6.5. Unlike the one-dimensional case, we fixed the batch size at 500 proposals
and the training cycles at 400 for these short experiments. The parameters tested included the
presence or absence of a pre-training step, the use of the regularised gradual Coulomb interaction
scheme, different correlation factors (none, Padé-Jastrow, or Jastrow), optimisers, learning rates,
and different latent dimension sizes, when the DSFFN is used. It should also be noted that a
frequency of ω = 1 was used for all sweeps at this stage.

7.2.1 Optimisers

0 50 100 150 200 250 300 350 400

Epochs

130

135

140

145

150

155

160

165

170

E
n
e
r
g
y

(
ω
)

RBM

RMSProp

Adam

SR

0 50 100 150 200 250 300 350 400

Epochs

130

135

140

145

150

155

160

165

170
DSFFN

Figure 7.2: Aggregated values over a Bayesian sweep for 20 particles and frequency of 1.0. A
similar trend is seen for both the RBM and DSFFN. The shaded region is not the error bars,
but the minimum an maximum values obtained for over the sweep.

In terms of optimiser choice, we show in Fig. 7.2 the averages of 99 randomly selected
parameters for a 20-particle case for the DSSFN ansatz. An analogous behaviour was observed
for the two other trial functions. We note that the use of the Bayesian optimisation scheme,
explained in 5.8, made the parameter search unbalanced and prevented the choice of stochastic
reconfiguration. On that note, for the 20 particle case, SR was chosen 14 times, ADAM 25 and
RMSProp was the most frequent, with 60 runs. This was seen for sweeps involving other number
of particles as well, and will be further discussed.

The reason for the infrequent SR choice is that it showed very unpredictable behaviour with
respect to the choice of other parameters. When SR managed to converge, it produced good
outcomes; however, its variability and often lack of convergence between different configurations
were substantial. Then, despite some good individual results, on average RMSProp or Adam
were favoured. For this reason, except when showing some selected results, RMSProp was the
optimiser of choice for the results to follow.

96

Chapter 7. Two-dimensional Quantum Dots Hyperparameter search

7.2.2 Correlation Factor

Still investigating the averaged results over random parameters, two analysis can be made
with respect to the choice of correlation factor. The following analysis for Fig. 7.3 is done for
a 12-particle case for the DSFFN, but the findings were the same for other choices of ansätze
and number of particles. Firstly, as indicated in Fig. 7.3, the absence of any correlation factor
resulted in the highest energy values, with the Jastrow factor (“j” in the figure) producing the
lowest energy and the Padé-Jastrow factor (“pj”) having the lowest energy.

The same can be said with respect to the standard deviation of the energy, further supporting
that the Padé-Jastrow factor brings us closer to the ground-state. This indicates that, without
correlation factors, even using an ansatz based on parametrised neural networks does not steer
us too far from the Hartree-Fock picture, where one single Slater determinant does not enable
us to capture significant correlations.

The lower energy values achieved for the Padé-Jastrow factor is also a positive theory con-
firmation, as it is supposed to satisfy Kato’s cusp condition in a way that is not necessarily the
case for the Jastrow factor [81], while also being symmetric under particle exchange.

0 50 100 150 200 250 300 350 400

Epoch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

E
n
e
r
g
y

S
t
d
.

D
e
v
i
a
t
i
o
n

Jastrow

Padé-Jastrow

No Corelation Factor

Figure 7.3: Aggregated values over a Bayesian sweep and several parameters (more than what is
shown in the parallel line plot) for a 12-particle system and DSFFN trial function. 165 different
parameter configuration were performed.

Lastly, an analysis can be performed with respect to the choice of correlation factor. Figure
7.4 shows the effect of the correlation factor with the use of a regularised gradual Coulomb

97

Chapter 7. Two-dimensional Quantum Dots Hyperparameter search

interaction potential. Despite these results only being shown for the VMC ansatz and two
particles, what is evident is that consistently better results were achieved with both the use of
a Padé-Jastrow factor together with the regularised gradual Coulomb interaction. This point is
particularly clear when looking at the standard deviations. Although the Padé-Jastrow curve,
without the regularised potential, may eventually achieve a lower minimum than the Jastrow
curve after the 400 epochs displayed, this occurs much faster with the inclusion of the gradual
Coulomb interaction. Again, it is evident that without a correlation factor, the results were
sub-optimal in terms of both energy reduction and standard deviation.

Although we do not demonstrate it here, the combination of gradual Coulomb and the
Padé-Jastrow factor was also consistently favoured when using the Deep Set network. While
nonlinear activation functions theoretically allow the network to capture particle correlations,
and this process is further simplified with the regularised gradual Coulomb, the results were
better with the combination of these methods than with them in isolation.

0 100 200 300 400

Epochs

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

E
n
e
r
g
y

(
ω
)

Coulomb

Jastrow

Padé-Jastrow

No Correlation Factor

0 100 200 300 400

Epochs

2.00

2.25

2.50

2.75

3.00

3.25

3.50

3.75

4.00

E
n
e
r
g
y

(
ω
)

Coulomb Gradual

Jastrow

Padé-Jastrow

No Correlation Factor

0 100 200 300 400

Epochs

1

2

3

4

5

E
n
e
r
g
y

S
t
d
.

D
e
v
i
a
t
i
o
n

Coulomb

Jastrow

Padé-Jastrow

No Correlation Factor

0 100 200 300 400

Epochs

0.2

0.4

0.6

0.8

1.0

E
n
e
r
g
y

S
t
d
.

D
e
v
i
a
t
i
o
n

Coulomb Gradual

Jastrow

Padé-Jastrow

No Correlation Factor

Figure 7.4: Aggregated values over a Bayesian sweep and several parameters (see text) for the
VMC ansatz and two particle case. Here, a frequency of ω = 1 is selected. The shaded region is
not the confidence interval, but the maximum and minimum values obtained from all parameter
configurations.

98

Chapter 7. Two-dimensional Quantum Dots One and Two-body Densities

7.3 One and Two-Body Densities

0 2 4
0.0

0.5

1.0

1.5

2.0
n

(r
)

ω0 = 1.0

VMC

RBM

DSFFN

0.0 2.5 5.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

ω0 = 0.5

0 5
0.0

0.2

0.4

0.6

0.8

ω0 = 0.28

0 10
0.0

0.1

0.2

0.3

0.4 N = 2N = 2N = 2

ω0 = 0.1

0 2 4
0

1

2

3

n
(r

)

VMC

RBM

DSFFN

0 5
0.0

0.5

1.0

1.5

2.0

0 5 10
0.0

0.5

1.0

1.5

0 10 20
0.0

0.2

0.4

0.6

0.8 N = 6N = 6N = 6

0.0 2.5 5.0
0

1

2

3

4

5

n
(r

)

VMC

RBM

DSFFN

0 5
0

1

2

3

4

0 5 10
0.0

0.5

1.0

1.5

2.0

2.5

0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

N = 12N = 12N = 12

0 5

Radial Distance, r

0

2

4

6

n
(r

)

VMC

RBM

DSFFN

0 5 10

Radial Distance, r

0

1

2

3

4

0 10

Radial Distance, r

0

1

2

3

0 20

Radial Distance, r

0.0

0.5

1.0

1.5

2.0 N = 20N = 20N = 20

Figure 7.5: Radial density profiles for different ansätze, after 224 MC samples. All ansätze were
multiplied by a Padé-Jastrow factor, and the sampled energies can be found in Tab. 6.3

In Fig. 7.5, we display one-body radial densities for up to 20 particles and for different
frequencies. A comparison can be made in terms of the different trial functions, but all the models
shown contained a Padé-Jastrow factor. It is clear that for higher frequency traps (leftmost in
the plots), the radial scale significantly changes. One might overlook the fact that the plots
are rescaled for consistent visibility. As expected, for higher frequencies, the particles are more
localised and confined closer to the origin. In terms of particle number, again as expected, the
profile heights are more pronounced with a larger number of particles, as n(r) integrates to
N . One sees that a higher density of fermions also induces more peaks in the profile. This is
because there is less effective space, yet fermions still have to satisfy the exclusion principle,
where fermions must occupy distinct energy levels. Then, the occupation of these levels lead to

99

Chapter 7. Two-dimensional Quantum Dots One and Two-body Densities

a shell structure where the fermions are forced to occupy higher energy states which leads to
the fringes in the density profile.

For lower-frequency traps, we also know that the quantum energy levels become closer to-
gether. This closer spacing directly impacts the character of the fringes in the density profile.
Due to the closer spacing of the energy levels, more levels must be populated because of the
exclusion principle. This results in a greater number of fringes appearing in the density pro-
file. Nevertheless, these fringes are typically less distinct and more diffuse compared to those in
higher frequency traps. Despite the difficulties in capturing correlations for the low-frequency
regime, all models in Fig. 7.5 seem to replicate this in some way.

For different ansätze, there is generally good agreement for higher frequencies. This is not the
case for the inferior right part Fig. 7.5. However, knowing which of the ansatz better represents
what is expected is hard only with the density profiles, and this analysis will have to wait until
we investigate the energy values.

Although unfortunate, this discrepancy between the profiles for low-frequency and higher
number of particles is expected. Lower frequency traps, which are spatially wider, are partic-
ularly hard to model when the Coulomb interaction is present. This is due to the long-rage
interaction of the Coulomb potential, which follows 1/r with r the distance between the parti-
cles. Then, even when separated by large distances, the particles still significantly affect each
other. This increases the complexity of the correlation, which becomes less localised. This
would not be the case, for example, if instead we had a Yukawa potential, which takes the form
exp(−kr)/r, with k being a constant. This potential decreases more rapidly as the distance
between particles increases.

The exact same analysis that was performed for the radial density profile can also be done
for the two-dimensional one-body densities of Fig. 7.6. We therefore do not repeat it here, but
only display the 12 and 20 particle cases for a frequency of ω = 1.0. The two and six particle
cases can be seen in the Appendix G.

X

−4
−2

0
2

4

Y

−4

−2

0

2

4

n(r1, r2)

0.0e+00

2.0e-02

4.0e-02

N = 12, VMC

X

−4
−2

0
2

4

Y

−4

−2

0

2

4

n(r1, r2)

0.0e+00

2.0e-02

4.0e-02

N = 12, RBM

X

−6 −4 −2
0

2
4

6

Y

−6

−4

−2

0

2
4

6

n(r1, r2)

0.0e+00

2.0e-02

4.0e-02

N = 12, DSFFN

X

−6 −4 −2
0

2
4

6

Y

−6

−4

−2
0

2
4

6

n(r1, r2)

0.0e+00

1.5e-02

3.0e-02

N = 20, VMC

X

−6 −4 −2
0

2
4

6

Y

−6

−4

−2

0

2
4

6

n(r1, r2)

0.0e+00

1.5e-02

3.0e-02

N = 20, RBM

X

−6 −4 −2
0

2
4

6

Y

−6

−4

−2
0

2
4

6

n(r1, r2)

0.0e+00

1.5e-02

3.0e-02

N = 20, DSFFN

Figure 7.6: Two-dimensional one body density profiles for 12 and 20 particles, for all the ansätze
used, all of which contained a Jastrow factor. The profiles were made from 224 samples, and the
final average energies for these can be seen in Tab. 7.2

100

Chapter 7. Two-dimensional Quantum Dots One and Two-body Densities

−10 −5 0 5 10

ri

−10

−5

0

5

10
r j

N = 2, DSFFN

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

n
(r

1
,r

2
)

×10−3

−6 −4 −2 0 2 4 6

ri

−6

−4

−2

0

2

4

6

r j

N = 2, DSFFN

0.0

0.5

1.0

1.5

2.0

n
(r

1
,r

2
)

×10−3

−4 −2 0 2 4

ri

−4

−3

−2

−1

0

1

2

3

4

r j

N = 2, DSFFN

0.0

0.5

1.0

1.5

2.0

n
(r

1
,r

2
)

×10−3

Figure 7.7: Radial two-body density profiles for the DSFFN ansatz and two particles. From left
to right we have frequencies of ω = 0.1, ω = 0.5 and ω = 1.0. The results shown were obtained
from 224 samples and 3000 training epochs with RMSProp. The densities of the first quadrant
were mirrored on the three others to give a symmetric representation.

Figure 7.7 shows that the lower frequency traps, which are wider spatially, also reflect this
wider profile in the two-body densities. In fact, pairs of particles are less likely to be seen in the
middle of the trap with a lower frequency value. While this figure shows, for the case of two
particles, how the density of two bodies changes with frequency, Fig. 7.8 shows how the density
of two bodies depends both on the number of particles and the choice of ansatz, but now for
ω = 0.5.

101

Chapter 7. Two-dimensional Quantum Dots One and Two-body Densities

−6 −4 −2 0 2 4 6

ri

−6

−4

−2

0

2

4

6

r j

N = 6, VMC

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

n
(r

1
,r

2
)

×10−2

−6 −4 −2 0 2 4 6

ri

−6

−4

−2

0

2

4

6

r j

N = 6, RBM

0.0

0.5

1.0

1.5

2.0

n
(r

1
,r

2
)

×10−2

−6 −4 −2 0 2 4 6

ri

−6

−4

−2

0

2

4

6

r j

N = 6, DSFFN

0.0

0.5

1.0

1.5

2.0

n
(r

1
,r

2
)

×10−2

−6 −4 −2 0 2 4 6

ri

−6

−4

−2

0

2

4

6

r j

N = 12, VMC

0

2

4

6

8
n

(r
1
,r

2
)

×10−2

−6 −4 −2 0 2 4 6

ri

−6

−4

−2

0

2

4

6

r j
N = 12, RBM

0

1

2

3

4

5

6

7

n
(r

1
,r

2
)

×10−2

−6 −4 −2 0 2 4 6

ri

−6

−4

−2

0

2

4

6

r j

N = 12, DSFFN

0

2

4

6

8

n
(r

1
,r

2
)

×10−2

−5.0 −2.5 0.0 2.5 5.0

ri

−6

−4

−2

0

2

4

6

r j

N = 20, VMC

0.00

0.25

0.50

0.75

1.00

1.25

1.50

n
(r

1
,r

2
)

×10−1

−6 −4 −2 0 2 4 6

ri

−6

−4

−2

0

2

4

6

r j

N = 20, RBM

0.0

0.2

0.4

0.6

0.8

1.0

1.2

n
(r

1
,r

2
)

×10−1

−6 −4 −2 0 2 4 6

ri

−6

−4

−2

0

2

4

6

r j

N = 20, DSFFN

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

n
(r

1
,r

2
)

×10−1

Figure 7.8: Radial two-body density profiles for ω = 0.5, for all ansätze and different numbers
of particles. From top to bottom we have 6, 12 and 20 particles and from left to right we have
VMC, RBM and DSFFN. The results shown were obtained from 224 samples, trained with 3000
epochs with RMSProp. The densities of the first quadrant were mirrored on the three others to
give a symmetric representation.

It seems that, from Fig. 7.8, all models are equally capable of capturing approximately the
same correlations. The density profiles exhibit a clear symmetry around the origin. Of course,
this symmetry was artificially induced by us, in the process of converting the two spatial coor-
dinates into a radial one and replicating the obtained results in the other quadrants. However,
this is not an unreasonable procedure, as we see from the one-body density profiles of Fig. 7.5
that the position distribution is radially symmetric.

We also notice that pairs of particles prefer to avoid the trap’s central region due to their
repulsion. As the particle count increases, there is a trend towards the localisation of particle
pairs, avoiding the diagonals, which are equidistant from the origin. It appears as though the
particles are avoiding the same spatial sphere, which aligns with physical intuition. This pattern
is evident with 12 particles, but we observe changes as more particles are added, where they

102

Chapter 7. Two-dimensional Quantum Dots Overall Energy Comparison

start to avoid not only diagonals but also the principal axes.

7.4 Overall Energy Comparison

0.2 0.4 0.6 0.8 1.0

ω

2.0

2.5

3.0

3.5

E
/E

0

N = 6

rbm

dsffn

vmc

0.2 0.4 0.6 0.8 1.0

ω

−0.5

−0.4

−0.3

E
−
E
h
f

0.2 0.4 0.6 0.8 1.0

ω

2.5

3.0

3.5

4.0

4.5

E
/E

0

N = 12

rbm

dsffn

vmc

0.2 0.4 0.6 0.8 1.0

ω

−1.0

−0.8

−0.6

−0.4
E
−
E
h
f

0.2 0.4 0.6 0.8 1.0

ω

2.5

3.0

3.5

4.0

4.5

E
/E

0

N = 20

rbm

dsffn

vmc

0.2 0.4 0.6 0.8 1.0

ω

−1.50

−1.25

−1.00

−0.75

E
−
E
h
f

Figure 7.9: On the left, the ratio between the measured energy and the non-interactive energy
for the same system. On the right, the measure of the correlation energy, E − Ehf , where Ehf
is the Hartree-Fock energy value taken from [101]. The two-particle case is too similar to the
others and is shown in the Apendix G

The right side of Fig. 7.9 is a good reassurance that all our models used achieve energies
lower than the HF energy for all ranges of frequencies. These results were gathered after training
for 3000 epochs and for 224 MC samplings. This is particularly due to the addition of the Jastrow
factor in all models at this point. While all models show comparable correlation energies, the
RBM model demonstrates exceptionally good performance for the 20-particle case but performs
poorly for the six-particle case. The reasons for this discrepancy remain unclear, but it is
likely due to sub-optimal hyperparameter choices. Typically, we would anticipate the opposite
behaviour.

The fact that Fig. 7.9 shows a correlation energy closer to 0 for lower frequency traps further
supports our previous discussion about the difficulty of capturing intricate correlations due to
the long-range Coulomb interaction. The larger the frequency value, the easier it is for our
model to capture correlations that HF is not capable of.

103

Chapter 7. Two-dimensional Quantum Dots Overall Energy Comparison

0.2 0.4 0.6 0.8 1.0

0.20

0.25

0.30

0.35

0.40

0.45

〈K̂
〉/
〈V̂
〉

N = 2

0.2 0.4 0.6 0.8 1.0

0.12

0.14

0.16

0.18

0.20

N = 6

rbm

dsffn

vmc

0.2 0.4 0.6 0.8 1.0

ω

0.08

0.10

0.12

0.14

〈K̂
〉/
〈V̂
〉

N = 12

0.2 0.4 0.6 0.8 1.0

ω

0.07

0.08

0.09

0.10

0.11

0.12

N = 20

Figure 7.10: Fraction between kinetic energy and total potential energy as function of the
frequency. The total potential energy corresponds to the sum of of interaction energy and the
trap energy.

The left-hand side of Fig. 7.9 shows that as a fraction of the non-interactive energy, all
models agree well. The increase in fraction E/E0 with a decrease in frequency aligns with what
is found in other studies. As discussed in [102], in fact, this ratio diverges, due to its scaling as
(ω−1/3) in the limit of ω → 0.

Finally, the proportion between energy components can be investigated in Fig. 7.10 and
in more detail for a six-particle case, in Tab. 7.1. Naturally, because we are in an interactive
regime, the virial theorem is not expected to hold. While there is a distinct trend, a more
detailed analysis would require us to investigate beyond the frequency of 1.0 and below 0.1.
This is because, with the range investigated, we are unable to replicate the expected plateau in
the ratio of ⟨K⟩ and ⟨V ⟩ observed in [33]. The trend we observe at least indicates that with
an increase in frequency comes a domination of the kinetic energy term. At low frequencies,
the opposite is observed, with potential energy becoming the dominant component of the energy
profile, as anticipated. This ratio decreases for larger quantum dots, where the interaction energy
increases in proportion as a result of the higher particle count.

104

Chapter 7. Two-dimensional Quantum Dots Overall Energy Comparison

Ansatz ω E ⟨K̂⟩ ⟨V̂trap⟩ ⟨V̂int⟩

dsffn

0.5 11.823(1) 1.769(3) 4.261(5) 5.793(3)
1.0 20.189(1) 3.498(5) 7.651(7) 9.040(4)
0.28 7.6481(9) 1.008(2) 2.756(4) 3.884(3)
0.1 3.5975(7) 0.377(1) 1.266(2) 1.954(2)

rbm

0.5 11.8778(9) 1.787(2) 4.308(4) 5.782(3)
1.0 20.2826(8) 3.539(4) 7.658(5) 9.086(3)
0.28 7.6617(7) 1.016(2) 2.702(3) 3.943(2)
0.1 3.5917(5) 0.386(1) 1.292(2) 1.913(1)

vmc

0.5 11.8432(8) 1.748(2) 4.370(3) 5.725(2)
1.0 20.1908(8) 3.461(4) 7.727(5) 9.003(3)
0.28 7.6657(7) 1.009(2) 2.729(2) 3.928(2)
0.1 3.6281(6) 0.412(1) 1.397(2) 1.819(1)

Table 7.1: Energy components from the six particle case for the energy values displayed in 7.2.

Lastly, we display in Tab. 7.2 a collection of the energy values for all models at different
frequencies and different numbers of particles. These values were the corresponding values as-
sociated to the body densities analysed and all plots other than the ones in the hyperparameter
parameter investigation of 7.2. It should be noted that the displayed values result from ex-
periments conducted with a mix of common and unique parameters. Specifically, although all
results were achieved after training for 3000 epochs, using RMSProp (except for the SR column),
and a batch size of 1000 proposals per epoch, some experiments varied in learning rates and
network architectures. This variation was unavoidable, as the scale of the system dictates the
architectural choices in several instances, and for larger quantum dots, smaller learning rates
were required.

105

Chapter 7. Two-dimensional Quantum Dots Overall Energy Comparison

N ω DSFFN + PJ RBM + PJ VMC + PJ HF [101] DMC [103]
SR RMSProp

2

0.1 0.44146(4) 0.4463(2) 0.44126(3) 0.545(1) 0.525635 0.44079(1)
0.28 1.02218(2) 1.02248(4) 1.02172(1) 1.02257(3) 1.14171 1.02164(1)
0.5 1.66047(6) 1.66097(7) 1.65982(1) 1.66062129(6) 1.79974 1.65977(1)
1.0 3.00070(5) 3.0023(1) 3.00009(1) 3.00108(5) 3.16190 3.00000(1)

6

0.1 3.5975(7) 3.5917(5) 3.6281(6) 3.85238 3.55385(5)
0.28 7.6361(4) 7.6481(9) 7.6617(7) 7.6657(7) 8.01957 7.60019(6)
0.5 11.800(4) 11.823(1) 11.8778(9) 11.8432(8) 12.271300 11.78484(6)
1.0 20.156(7) 20.189(1) 20.2826(8) 20.1908(8) 20.719200 20.15932(8)

12

0.1 12.427(1) 12.445(2) 12.678(3) 12.9247 12.26984(8)
0.28 25.776(1) 25.767(2) 25.937(2) 26.5500 25.63577(9)
0.5 39.325(1) 39.304(2) 39.318(2) 40.2161 39.1596(1)
1.0 65.893(1) 65.914(2) 65.860(2) 66.9113 65.7001(1)

20

0.1 30.614(4) 30.278(3) 30.513(4) 31.1902 29.9779(1)
0.28 62.317(2) 62.318(5) 62.541(4) 63.5390 61.9268(1)
0.5 94.305(2) 94.215(4) 94.353(4) 95.7328 93.8752(1)
1.0 156.388(3) 156.315(4) 156.365(4) 158.004 155.8822(1)

Average 33.5272 33.5058 33.6916 34.1600 33.3523

Table 7.2: Collection of the results for different frequencies and ansätze choices, in comparison
to Hartree-Fock and DMC energies. The text in bold font marks the best obtained value for
that row. All values were obtained with RMSProp except when shown otherwise. For training,
3000 epochs were used with batch size of 1000. For sampling, 224 proposal steps are taken. The
missing values for SR mean that we were unable to achieve convergence.

All ansätze in Fig. 7.2 showed energy averages lower than Hartree-Fock, but higher than
DMC. If we for now disregard the SR column we see that the preferred model was the RBM
together with the Padé-Jastrow factor. The DSFFN network was very similar, differing by just
0.02 on average, while the VMC had the highest energies.

To address the use of the Stochastic Reconfiguration method, we revisit the topic briefly
mentioned in the Bayesian hyperparameter search of Sec. 7.2. When this method converged,
it demonstrated great results. For instance, at a frequency of ω = 1.0 with six particles, we
achieved results superior to those obtained from the DMC calculations. Unfortunately, achieving
such a convergence proved to be a challenge. The required parameter choices were unpredictable
and lacked intuitive guidance.

One potential explanation is that the neural networks employed were simply too complex
models. Although this might be a contributing factor, our experiments with smaller networks
did not yield any energy convergence patterns with any of the optimisers tested. Only with more
expressive and larger networks did we achieve good results beyond one-dimensional systems.

There might be an unfortunate gap in the complexities of the models tested. A 20-particle
VMC ansatz used 40 variational parameters and behaved predictably based on parameter
choices. For example, a smaller learning rate generally led to more stable convergence, sim-
ilar to using a larger batch size. A similar argument applies to the RBM, where changing the
number of hidden nodes, sometimes favoured training. An RBM we used for the 20-particle
case with 6 hidden nodes displayed 200 parameters, and the Deep Set networks that we used
had a similar number. However, we speculate that the non-linear activation layers significantly
increased the model’s complexity. While this is in general desirable, as we want to be able to
capture complex pattern in data, it seems to have made the training process more difficult than

106

Chapter 7. Two-dimensional Quantum Dots Time Scaling Analysis

expected.

7.5 Time Scaling Analysis

Both Fig. 7.11 and Table 7.3 analyse the wall time scaling for the three models, only for
the RMSProp optimiser. The choice of this optimiser was based on its use in presenting nearly
all results for this two-dimensional system. Then, while some low-energy values were obtained
with SR, we reserve its time scaling discussion for the one-dimensional system, Sec. 6.6. Here
we analyse the averages over three independent runs for each measurement, with 219 sampling
steps, up to 22 particles, and for 500 training epochs.

Interestingly, Fig. 7.11 and Tab. 7.3 seem to indicate very similar polynomial-order scaling
for the different trial functions. This affirmation is based on the very close values of b in the
polynomial or exponential fits with a constrained constant factor. In Sec. 6.6 we do a more
detailed analysis of how the methods scale with the number of parameters. This analysis suggests
that the DSFFN should scale worse than what was measured, and we present some hypotheses
as to why this is not the case.

Firstly, there might be efficient accelerated linear algebra optimisation at play due to the use
of just-in-time compilations. More importantly, the choice of architecture size for the DSFFN
might have been too small. Here we measure the wall times for the smallest architecture used
(architecture one in Tab. 6.1). This was not to be deceptive, but instead a random decision, as
we needed to employ varying architectures based on the particle count and frequency to achieve
optimal results.

5 10 15 20

Number of particles

0

50

100

150

200

250

300

T
i
m
e

(
s
)

VMC

5 10 15 20

Number of particles

0

50

100

150

200

250

300

T
i
m
e

(
s
)

RBM

RMSProp training

Sampling time

5 10 15 20

Number of particles

0

50

100

150

200

250

300

T
i
m
e

(
s
)

DSFFN

Figure 7.11: Wall time scaling in seconds as a function of number of particles, up to 22 electrons.
We display separately the time for sampling and training, where the final wall time is their sum.

For the sake of comparison, it is worth mentioning that we can evaluate our scaling against
another study that implemented the same system in C++ [33]. In their study, they did not
use automatic differentiation as we do. For their RBM, under the same constraint of a = 0.5,
they achieved a polynomial degree of approximately b = 1.5. This indicates that our scaling
is poorer, which is expected given that we are using Python. Nevertheless, our scaling is not
significantly worse, and our energy results are comparable.

107

Chapter 7. Two-dimensional Quantum Dots Time Scaling Analysis

Table 7.3: Polynomial and exponential fits of time scaling vs. Number of Particles. The leftmost
fits do not constrain any coefficients, while the leftmost fits constrains a = 0.5.

Ansatz Opt. Poly. (aN b) Exp. (aeNb) Poly. (0.5N b) Exp. (0.5eNb)

a b R2 a b R2 b R2 b R2

VMC RMSProp 0.05 2.76 0.96 6.60 0.17 0.98 2.02 0.94 0.29 0.93

RBM RMSProp 0.04 2.78 0.98 5.70 0.17 0.99 1.98 0.96 0.28 0.94

DSFFN RMSProp 0.24 2.32 0.97 11.68 0.15 0.99 2.07 0.96 0.30 0.89

108

Part IV

Conclusion

109

Chapter 8

Conclusion

Concluding Points

In conclusion, this thesis has explored the application of various machine learning techniques
to solve quantum many-body problems, specifically focussing on one-dimensional trapped spin-
less fermions and two-dimensional quantum dots. By making use of neural networks such as
Deep Set feed-forward networks (DSFFN) and restricted Boltzmann machines (RBM), we have
demonstrated the potential of these networks to be used as variational Monte Carlo (VMC)
functions, following ideas of reinforcement learning. From our findings, this approach enabled
us to approximate ground-state energies and wavefunctions with good accuracy.

In particular, the effectiveness of neural network ansätze was evident as the DSFFN in
combination to stochastic reconfiguration yielded in an isolated case, energy values below DMC
calculations, and overall very good results. If an average analysis of the energies is made and if
we disregard the stochastic reconfiguration method due to its difficult convergence behaviour, the
RBM implementation was slightly favoured in the two-dimensional fermionic trap with Coulomb
interaction. In contrast, for the one-dimensional case, where SR convergence was easy and used
for all ansätze, the VMC without neural networks was optimal.

In general, the inclusion of correlation factors, such as the Jastrow and Padé-Jastrow factors,
significantly improved the energy estimates, bringing them closer to the reference values found in
the literature. However, it is important to note that while these studies were done in dedicated
clusters, our results were all performed locally.

This improvement from the addition of correlation factors was present in both one-dimensional
and two-dimensional systems, and the Padé-Jastrow factor, in particular, was shown to be the
best correlation factor for the Coulomb interaction potential.

We additionally were able to study correlations from one- and two-body density profiles,
observing typical fermionic behaviour. In the spinless fermion system, we were able to observe
crystallisation and bosonisation under the repulsive and attractive regimes, respectively. This
was also observed for the two-dimensional system as a function of the frequency of the trap.
Similarly, we were able to study the distribution of energy components for both cases qualita-
tively, further showing that neural networks can be used to extract and understand the physics
of simulated systems. For large quantum dots systems and lower frequency values, it was sig-
nificantly hard for all ansätze to obtain equally good results. Nonetheless, the values obtained
were still acceptable and below the Hartree-Fock energy.

The optimisation of hyperparameters through a Bayesian approach proved to be useful, yet
misleading, in some cases. While it guided us to generally good choices, it prevented us from
properly experimenting with the optimiser that eventually yielded the best results. For the
two-dimensional quantum dot system, systematically lower energies were found with the SR
reconfiguration method. However, this method was avoided by Bayesian optimisation search
due to a rare convergence. Different optimisers, learning rates, and network architectures were
explored, with RMSProp and Adam being overall the most robust for the tested configurations.

110

Chapter 8. Conclusion

In fact, SR yielded excellent results, but Adam and RMSProp were consistently good, rarely
displaying divergence.

The time scaling analysis indicated that the neural network models could handle an increasing
number of particles with reasonable computational resources. Although Python showed slightly
poorer scaling compared to C++ implementations, overall performance was not a constraint in
our case.

In summary, we can confidently say that the work here developed demonstrated the promis-
ing capabilities of machine learning techniques in tackling quantum many-body problems. Our
investigations contributed to an understanding of the newly conceptualised field of neural quan-
tum states, while also providing meaningful results, comparable to other studies.

Paths For Future Work

This thesis concludes with several possible paths for future research. Given the reasonable
quality of the results obtained, a natural progression would be to extend our methodologies to
larger quantum systems. This expansion would allow us to investigate the limits of our methods
in more complex scenarios, exploring different interaction potentials and, at the same time,
higher-dimensional systems.

An orthogonal but equally important direction is to improve the accuracy and reliability of
our quantum state optimisation. As already mentioned, our results obtained with the stochas-
tic reconfiguration method demonstrated very positive results, but with unreliable behaviour.
Then perhaps the most immediate path to try and improve this method is to investigate recent
advancements in optimisation techniques, such as the Decision Geometry approach proposed by
[29]. Implementing and evaluating these novel optimisation schemes could enhance the conver-
gence and stability of our models.

Our current incorporation of physical constraints to the ansatz is also somewhat primitive.
A natural path to improve this would be to extend our Deep Set implementations to utilise
equivariant layers, constructing more general Slater determinants with the networks parametris-
ing the single-particle states while embedding backflow correlations [104]. Similarly, exploring
the integration of a Pfaffian ansatz, as demonstrated in the work of [16], could be a fruitful
direction.

Lastly, to enable more extensive parameter experimentation and improve ground-state min-
imisation for larger systems, it would be necessary to conduct a thorough profiling of our JAX
implementation to identify and address performance bottlenecks.

111

Part V

Appendices

112

Eliminating dimensions

A Eliminating Dimensions

As described in Sec. 2.6, we will prefer to deal with energy units of either ℏω or ℏ and lenght
units of aho =

√
ℏ/mω. We now show how this allows us to write the simplified Hamiltonian

expressions. Starting from the noninteractive part of the Hamiltonian,

Ĥ0 =
N∑
i

(−ℏ2
2m
∇2
i +

1

2
mω2r2i

)
,

we make a change of coordinates r → r/aho so that the Cartesian coordinates become x̂i = xi/aho
and the components of the gradient vector undergo the change of coordinates

∂

∂x̂i
=

∂

∂x̂i

∂x̂i
∂xi

=
1

aho

∂

∂x̂i
,

which naturally propagate to the Laplacian as

∇̂2
i =

1

a2ho
∇2
i .

Now, in the new coordinate system, but going back to the original notation not to pollute
the demonstration, the Hamiltonian turns into

Ĥ0 =
N∑
i

− ℏ
2m

1

a2ho
∇2
i +

m

2
(ωri/aho)

2 .

Using the definition of aho, some terms simplify giving

Ĥ0 =
N∑
i

−ℏω
2
∇2
i +

ℏω
2
r2i .

Finally, by using energy units of ℏω,

Ĥ0

ℏω
=

N∑
i

−1

2
∇2
i +

1

2
r2i .

Now for the interactive part of the Hamiltonian, we have two scenarios. For the Coulomb
interaction, can use an arbitrary unit of charge such that∑

i<j

Vint(ri, rj) =
1

4πϵ0

∑
i<j

qiqj
rij
→
∑
i<j

1

rij
,

where ϵ0 is the permittivity of free space, and qi the charge of particle i.
For the finite range interaction, we redefine the interaction range σ0 = σ/aho and the inter-

action strength Vo = V/(ahoℏω)

∑
i<j

Vint(ri, rj) =
V

σ
√
2π

∑
i<j

exp

[
−
r2ij
2σ2

]
→ V0(ahoℏω)

σ0aho
√
2π

∑
i<j

exp

[
−
a2hor

2
ij

2a2hoσ
2
0

]
,

Which finally, in energy units of ℏω becomes

∑
i<j

Vint(ri, rj) =
V0

σ0
√
2π

∑
i<j

exp

[
−
r2ij
2σ20

]
.

113

VMC derivations

B VMC Derivations

Let f(r) = lnΨ(r) and EL = KL + VL. Note then that

∇f(r) = ∇Ψ(r)

Ψ(r)
(1)

∇2f(r) =
∇2Ψ(r)

Ψ(r)
−
(∇Ψ(r)

Ψ(r)

)2

, (2)

which leads to

KL(r) = −
1

2

∇2Ψ(r)

Ψ(r)
(3)

= −1

2

(
∇2f(r) + (∇f(r))2

)
. (4)

C Steepest Descent Derivations

We posed the steepest descent problem as the constrained optimisation of minimising

L(θt) + (θ − θt)
⊤∇L(θt) +

1

2
∥θ − θt∥22,

subject to ∥θ − θt∥2 = ϵ.
For that we introduce a Lagrange multiplier λ to incorporate the constraint into the objective

function, leading to the Lagrangian:

G(θ, λ) = L(θt) + (θ − θt)
⊤∇L(θt) +

1

2
∥θ − θt∥22 + λ (∥θ − θt∥2 − ϵ) .

Taking derivatives with respect to θ and λ, and seting them to zero, we have

∇θG(θ, λ) = ∇L(θt) + (θ − θt) + λ
θ − θt
∥θ − θt∥

= 0,

∂G
∂λ

= ∥θ − θt∥ − ϵ = 0.

The gradient with respect to λ simply enforces the constrain, ∥θ − θt∥ = ϵ, but from the
gradient with respect to θ we find

(θ − θt)(1 +
λ

∥θ − θt∥
) = −∇L.

Here we could further investigate the λ factor, but the important thing is that this yields

θt+1 = θt − α∇L(θt),

for some α that depends on the constraint ϵ.

D Gaussian-Binary RBM Expressions

The marginal probability distribution for the Gaussian-binary RBM’s visible nodes is given
by

p(R) = exp

{
−

nr∑
i

(ri − ai)2
2σ2

}∑
{h}

exp


nh∑
j

bjhj +

nr,nh∑
i,j

riwijhj
σ2

 ,

114

Minimal Running NQS Script

where we can rewrite the summation over all possible vectors h as

∑
{h}

exp

∑
j

(
bj +

∑
i

riwij
σ2

)
hj

 .

Now, if we denote for simplicity:

θj = bj +
∑
i

riwij
σ2

,

the expression becomes

∑
{h}

exp

∑
j

θjhj

 =
∏
j

 1∑
hj=0

exp(θjhj)


=
∏
j

(1 + exp(θj)) .

Substituting back θj gives us

p(R) = exp

{
−

nr∑
i

(ri − ai)2
2σ2

}∏
j

[
1 + exp

{
bj +

∑
i

riwij
σ2

}]
.

E Minimal Running NQS Script

We here provide a minimal example for a simulation script for running an NQS simulation.
The configurations, of course, have to be set up correctly in a yaml file which has to be passed
as argument.

1 import argparse, os, jax, yaml
2 import numpy as np
3 from nqs.state import nqs
4

5 def initialize_system(config):
6 system = nqs.NQS(
7 backend=config["backend"],
8 logger_level="INFO",
9 seed=config["seed"],

10)
11

12 common_kwargs = {
13 "correlation": config["correlation"],
14 "particle": config["particle"],
15 "nhidden": config.get("nhidden"),
16 "sigma2": 1.0 / np.sqrt(config["omega"]) if config["nqs_type"] != "dsffn" else None
17 }
18 config["common_kwargs"] = common_kwargs
19 system.set_wf(config["nqs_type"], config["nparticles"], config["dim"], **common_kwargs)
20 return system
21

22 def run_experiment(config):
23 system = initialize_system(config)
24 system.set_sampler(
25 mcmc_alg=config["mcmc_alg"],
26 scale=1 / np.sqrt(config["nparticles"] * config["dim"]),
27)
28 system.set_hamiltonian(
29 type_="ho",

115

Minimal Running NQS Script

30 int_type=config["interaction_type"],
31 omega=config["omega"],
32 r0_reg=10,
33 training_cycles=config["training_cycles"],
34)
35 system.set_optimizer(
36 optimizer=config["optimizer"],
37 eta=config["eta"] / np.sqrt(config["nparticles"] * config["dim"]),
38)
39

40 if config["nqs_type"] == "dsffn":
41 system.pretrain(
42 model="Gaussian",
43 max_iter=1000,
44 batch_size=2000,
45 logger_level="INFO",
46 args=config["common_kwargs"],
47)
48

49 history = system.train(
50 max_iter=config["training_cycles"],
51 batch_size=config["batch_size"],
52 early_stop=False,
53 history=True,
54 tune=False,
55 grad_clip=0,
56 seed=config["seed"],
57)
58

59 df_samples = system.sample(
60 config["nsamples"],
61 config["nchains"],
62 config["seed"],
63 save_positions=config["save_positions"],
64)
65

66 def load_config(config_path):
67 with open(config_path, "r") as file:
68 return yaml.safe_load(file)
69

70 if __name__ == "__main__":
71 parser = argparse.ArgumentParser(description="Run NQS Experiment")
72 parser.add_argument("--config", type=str, required=True, help="Path to the configuration

file")
73 args = parser.parse_args()
74

75 config_path = os.path.join(os.path.dirname(__file__), args.config)
76 run_experiment(load_config(config_path))

Listing 1: Simplified example of execution code for a NQS experiment

116

Additional Results 1D Case

F Additional Results 1D Case

Figure 1: Sweep over 324 hyperparameters for the standard RBM ansatz, from which the results
shall be aggregated for the one-dimensional system.

Figure 2: Sweep over 321 hyperparameters for the standard VMC ansatz, from which the results
shall be aggregated for the one-dimensional system.

117

Additional Results 2D Case

G Additional Results 2D Case

0.2 0.4 0.6 0.8 1.0

ω

1.5

2.0

2.5

E
/E

0

N = 2

rbm

dsffn

vmc

0.2 0.4 0.6 0.8 1.0

ω

−0.15

−0.10

−0.05

0.00

E
−
E
h
f

Figure 3: On the left, the energy over non-interactive energy values for two-particle two dimen-
sional quantum dot as a function of frequency of the trap. On the right, the correlation energy
with Ehf the Hartree-Fock energy.

X

−4
−2

0
2

4

Y

−4

−2

0

2

4

n(r1, r2)

0.0e+00

8.0e-02

1.6e-01

N = 2, VMC

X

−4
−2

0
2

4

Y

−4

−2

0

2

4

n(r1, r2)

0.0e+00

8.0e-02

1.6e-01

N = 2, RBM

X

−4
−2

0
2

4

Y

−4

−2

0

2

4

n(r1, r2)

0.0e+00

8.0e-02

1.6e-01

N = 2, DSFFN

X

−4
−2

0
2

4

Y

−4

−2

0

2

4

n(r1, r2)

0.0e+00

3.0e-02

6.0e-02

N = 6, VMC

X

−4
−2

0
2

4

Y

−4

−2

0

2

4

n(r1, r2)

0.0e+00

3.0e-02

6.0e-02

N = 6, RBM

X

−4
−2

0
2

4

Y

−4

−2

0

2

4

n(r1, r2)

0.0e+00

3.0e-02

6.0e-02

N = 6, DSFFN

Figure 4: One-body density for the two and six particle case in a trap frequency of ω = 1.0

118

Bibliography

[1] Attila Szabo and Neil S Ostlund. Modern quantum chemistry: introduction to advanced
electronic structure theory. (2012).

[2] Isaiah Shavitt and Rodney J. Bartlett. Many-Body Methods in Chemistry and Physics:
MBPT and Coupled-Cluster Theory. (2009).

[3] Konstantinos D Vogiatzis et al. “Pushing configuration-interaction to the limit: Towards
massively parallel MCSCF calculations”. The Journal of Chemical Physics 147, (18).
(2017).

[4] Federico Becca and Sandro Sorella. Quantum Monte Carlo approaches for correlated sys-
tems. (2017).

[5] Steven R White. “Density matrix formulation for quantum renormalization groups”. Phys-
ical Review Letters 69, (19). 2863. (1992).

[6] Giuseppe Carleo and Matthias Troyer. “Solving the quantum many-body problem with
artificial neural networks”. Science 355. 602. (2017).

[7] Or Sharir, Amnon Shashua, and Giuseppe Carleo. “Neural tensor contractions and the
expressive power of deep neural quantum states”. Physical Review B 106, (20). 205136.
(2022).

[8] Dong-Ling Deng, Xiaopeng Li, and S Das Sarma. “Quantum entanglement in neural
network states”. Physical Review X 7, (2). 021021. (2017).

[9] Nicolas Le Roux and Yoshua Bengio. “Representational power of restricted Boltzmann
machines and deep belief networks”. Neural computation 20, (6). 1631. (2008).

[10] Hannah Lange et al. From Architectures to Applications: A Review of Neural Quantum
States. arXiv: 2402.09402. (2024).

[11] David Pfau et al. “Ab initio solution of the many-electron Schrödinger equation with deep
neural networks”. Physical Review Research 2. 033429. (2020).

[12] Jane Kim et al. Neural-network quantum states for ultra-cold Fermi gases. arXiv: 2305.
08831. (2023).

[13] David Pfau et al. Natural Quantum Monte Carlo Computation of Excited States. arXiv:
2308.16848. (2024).

[14] Scott Lawrence, Arlee Shelby, and Yukari Yamauchi. Quantum states from normalizing
flows. arXiv: 2406.02451. (2024).

[15] Filippo Vicentini et al. “NetKet 3: Machine learning toolbox for many-body quantum
systems”. SciPost Physics Codebases. 007. (2022).

[16] Jane Mee Kim. “Solving the Quantum Many-Body Problem with Neural-Network Quan-
tum States”. PhD thesis. (2023).

[17] Charles W Curtis. Linear algebra: an introductory approach. (2012).

[18] Walter Rudin et al. “Principles of mathematical analysis”. In: vol. 3. McGraw-hill New
York, 1976.

119

Bibliography Bibliography

[19] Emmy Noether. “Invariante variationsprobleme”. In: Gesammelte Abhandlungen-Collected
Papers. Springer, 1983, p. 231.

[20] Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information.
(2010).

[21] Erwin Schrödinger. “Die gegenwärtige Situation in der Quantenmechanik”. Naturwis-
senschaften 23. 844. (1935).

[22] Thierry Giamarchi, Anibal Iucci, and Christophe Berthod. Quantum Monte Carlo. Lec-
ture notes from University of Geneva. Accessed on May 1, 2024. (2008).

[23] Jun John Sakurai and Jim Napolitano. Modern quantum mechanics. (2020).

[24] Jesus Rogel-Salazar. “The gross–pitaevskii equation and bose–einstein condensates”. Eu-
ropean Journal of Physics 34, (2). 247. (2013).

[25] Frank Jensen. Introduction to computational chemistry. (2017).

[26] Matthias Wittemer et al. “Trapped-ion toolkit for studies of quantum harmonic oscillators
under extreme conditions”. Philosophical Transactions of the Royal Society A 378, (2177).
20190230. (2020).

[27] Lennart Sobirey et al. “Observation of superfluidity in a strongly correlated two-dimensional
Fermi gas”. Science 372, (6544). 844. (2021).

[28] J. W. T. Keeble et al. “Machine learning one-dimensional spinless trapped fermionic
systems with neural-network quantum states”. Phyics Review A 108. 063320. (2023).

[29] M. Drissi et al. “Second-order optimization strategies for neural network quantum states”.
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineer-
ing Sciences 382. 20240057. (2024).

[30] Guanghan Xia. “Quantum Harmonic Oscillators in One and Two Dimensions”. Highlights
in Science, Engineering and Technology 64. 213. (2023).

[31] Tosio Kato. “On the eigenfunctions of many-particle systems in quantum mechanics”.
Communications on Pure and Applied Mathematics 10. 151. (1957).

[32] Philip Sedgwick. “Pearson’s correlation coefficient”. British Medical Journal Publishing
Group 345. (2012).

[33] Even Marius Nordhagen. “Studies of Quantum Dots using Machine Learning”. Master’s
thesis. (2019).

[34] A Eagle. “Chance versus randomness”. (2014).

[35] Dirk P Kroese et al. “Why the Monte Carlo method is so important today”. Wiley Inter-
disciplinary Reviews: Computational Statistics 6. 386. (2014).

[36] Jaewook Lee, Woosuk Sung, and Joo-Ho Choi. “Metamodel for efficient estimation of
capacity-fade uncertainty in Li-Ion batteries for electric vehicles”. Energies 8. 5538.
(2015).

[37] Nicholas Metropolis et al. “Equation of State Calculations by Fast Computing Machines”.
The Journal of Chemical Physics 21. 1087. (1953).

[38] Gaopei Pan and Zi Yang Meng. “The sign problem in quantum Monte Carlo simu-
lations”. In: Encyclopedia of Condensed Matter Physics. Elsevier, 2024, p. 879. isbn:
9780323914086.

[39] Morten Hjorth-Jensen. Advanced Topics in Computational Physics. Accessed: 2024-05-12.
(2021).

[40] A. Gelman, W. R. Gilks, and G. O. Roberts. “Weak convergence and optimal scaling of
random walk Metropolis algorithms”. The Annals of Applied Probability 7. 110. (1997).

120

Bibliography Bibliography

[41] Malvin H Kalos, Dominique Levesque, and Loup Verlet. “Helium at zero temperature
with hard-sphere and other forces”. Physical Review A 9. 2178. (1974).

[42] Vesa Apaja. Many-Body Physics. Lecture notes from University of Jyväskylä, Finland.
Accessed on May 1, 2024. (2018).

[43] Ioan Kosztin, Byron Faber, and Klaus Schulten. “Introduction to the diffusion Monte
Carlo method”. American Journal of Physics 64. 633. (1996).

[44] Siu A Chin. “Quadratic diffusion Monte Carlo algorithms for solving atomic many-body
problems”. Physical Review A 42. 6991. (1990).

[45] Alexander Fleischer. “Quantum Monte Carlo Methods for Studying Quantum Dots”. Mas-
ter’s thesis. (2018).

[46] Nicolaas Godfried Van Kampen. Stochastic processes in physics and chemistry. (1992).

[47] James B Anderson. “A random-walk simulation of the Schrödinger equation: H+ 3”. The
Journal of Chemical Physics 63. 1499. (1975).

[48] Kristin P Bennett and Emilio Parrado-Hernández. “The interplay of optimization and
machine learning research”. The Journal of Machine Learning Research 7. 1265. (2006).

[49] Trevor Hastie et al. The elements of statistical learning: data mining, inference, and
prediction. (2009).

[50] Alex Graves. Generating Sequences With Recurrent Neural Networks. arXiv: 1308.0850.
(2014).

[51] Diederik Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimization”. Inter-
national Conference on Learning Representations. (2015).

[52] Mohamed Reyad, Amany M Sarhan, and Mohammad Arafa. “A modified Adam algorithm
for deep neural network optimization”. Neural Computing and Applications 35. 17095.
(2023).

[53] Yushun Zhang et al. “Adam can converge without any modification on update rules”.
Advances in neural information processing systems 35. 28386. (2022).

[54] Krzysztof C Kiwiel. “Convergence and efficiency of subgradient methods for quasiconvex
minimization”. Mathematical programming 90. 1. (2001).

[55] Léon Bottou et al. “Stochastic gradient learning in neural networks”. Proceedings of Neuro-
Nımes 91, (8). 12. (1991).

[56] Mo Zhou et al. “Toward understanding the importance of noise in training neural net-
works”. International Conference on Machine Learning. P. 7594. (2019).

[57] Shun-ichi Amari. “Natural Gradient Works Efficiently in Learning”. Neural Computation
10. 251. (1998).

[58] Shun-Ichi Amari and Scott C Douglas. “Why natural gradient?” 2. 1213. (1998).

[59] Yan Wu et al. LOGAN: Latent Optimisation for Generative Adversarial Networks. arXiv:
1912.00953. (2020).

[60] Aram W Harrow and John C Napp. “Low-depth gradient measurements can improve
convergence in variational hybrid quantum-classical algorithms”. Physical Review Letters
126. 140502. (2021).

[61] Sam McArdle et al. “Variational ansatz-based quantum simulation of imaginary time
evolution”. npj Quantum Information 5. 75. (2019).

[62] James Stokes et al. “Quantum natural gradient”. Quantum 4. 269. (2020).

[63] Chae-Yeun Park and Michael J Kastoryano. “Geometry of learning neural quantum
states”. Physical Review Research 2. 023232. (2020).

121

Bibliography Bibliography

[64] Murat Onen et al. “Nanosecond protonic programmable resistors for analog deep learn-
ing”. Science 377. 539. (2022).

[65] Cong Fu et al. “Atsne: Efficient and robust visualization on gpu through hierarchical opti-
mization”. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. P. 176. (2019).

[66] Zihou Ng. Draw Restricted Boltzmann Machines using TikZ. https://gist.github.
com/stwind/999544e9002e0aa477653fddf95d4dc5. Accessed: 2024-05-27. (2020).

[67] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. (2016).

[68] Izaak Neutelings. Neural Networks in TikZ. Accessed: 2024-05-30. (2021).

[69] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs). arXiv: 1606.
08415. (2023).

[70] Michael A Nielsen. Neural networks and deep learning. (2015).

[71] George Cybenko. “Approximation by superpositions of a sigmoidal function”. Mathematics
of control, signals and systems 2. 303. (1989).

[72] Moshe Leshno et al. “Multilayer feedforward networks with a nonpolynomial activation
function can approximate any function”. Neural Networks 6, (6). 861. (1993).

[73] Ding-Xuan Zhou. “Universality of deep convolutional neural networks”. Applied and com-
putational harmonic analysis 48. 787. (2020).

[74] Anton Maximilian Schäfer and Hans Georg Zimmermann. “Recurrent neural networks
are universal approximators”. Artificial Neural Networks–ICANN 2006: 16th Interna-
tional Conference, Athens, Greece, September 10-14, 2006. Proceedings, Part I 16. P. 632.
(2006).

[75] Rickard Brüel Gabrielsson. “Universal function approximation on graphs”. Advances in
neural information processing systems 33. 19762. (2020).

[76] Roger Grosse. Topics in Machine Learning: Neural Net Training Dynamics. Accessed:
2024-05-09. (2021).

[77] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. (2018).

[78] Ronald J Williams. “Simple statistical gradient-following algorithms for connectionist
reinforcement learning”. Machine learning 8. 229. (1992).

[79] Sheng-Hsuan Lin. “Solving Quantum Many-Body Problem with Feed-Forward Neural
Networks”. Master’s thesis. (2018).

[80] Román Orús. “A practical introduction to tensor networks: Matrix product states and
projected entangled pair states”. Annals of physics 349. 117. (2014).

[81] Chien-Jung Huang, Claudia Filippi, and CJ Umrigar. “Spin contamination in quantum
Monte Carlo wave functions”. The Journal of chemical physics 108. 8838. (1998).

[82] Jeffmin Lin, Gil Goldshlager, and Lin Lin. “Explicitly antisymmetrized neural network
layers for variational Monte Carlo simulation”. Journal of Computational Physics 474.
111765. (2023).

[83] M Holzmann et al. “Backflow correlations for the electron gas and metallic hydrogen”.
Physical Review E 68, (4). 046707. (2003).

[84] Manzil Zaheer et al. “Deep sets”. Advances in neural information processing systems 30.
(2017).

[85] James Bradbury et al. “JAX: composable transformations of Python+ NumPy programs”.
(2018).

122

Bibliography Bibliography

[86] Daniel Haas. Codebase for thesis. https://github.com/Daniel-Haas-B/NeuralQuantumState.
(2024).

[87] Daniel Haas. Documentation page for thesis. https://neural-quantum-state.readthedocs.
io/en/latest/index.html. (2024).

[88] James Martens and Roger Grosse. “Optimizing neural networks with kronecker-factored
approximate curvature”. International conference on machine learning. P. 2408. (2015).

[89] Charles R. Harris et al. “Array programming with NumPy”. Nature 585. 357. (2020).

[90] Abril-Pla Oriol et al. “PyMC: A Modern and Comprehensive Probabilistic Programming
Framework in Python”. PeerJ Computer Science 9. e1516. (2023).

[91] Joblib Development Team. Joblib: running Python functions as pipeline jobs. https:
//joblib.readthedocs.io/. (2020).

[92] Kun Il Park and M Park. Fundamentals of probability and stochastic processes with ap-
plications to communications. (2018).

[93] Marius Jonsson. “Standard error estimation by an automated blocking method”. Physical
Review E 98. 043304. (2018).

[94] H. Flyvbjerg and H. G. Petersen. “Error estimates on averages of correlated data”. The
Journal of Chemical Physics 91. 461. (1989).

[95] Michael Borenstein et al. Introduction to meta-analysis. (2021).

[96] Ivan Glasser et al. “Neural-network quantum states, string-bond states, and chiral topo-
logical states”. Physical Review X 8, (1). 011006. (2018).

[97] Lukas Biewald. Experiment Tracking with Weights and Biases. Software available from
wandb.com. (2020).

[98] Ian Dewancker, Michael McCourt, and Scott Clark. Bayesian Optimization for Machine
Learning : A Practical Guidebook. arXiv: 1612.04858. (2016).

[99] Manuel Valiente. “Bose-Fermi dualities for arbitrary one-dimensional quantum systems
in the universal low-energy regime”. Physical Review A 102, (5). 053304. (2020).

[100] DinhDuy Vu and S. Das Sarma. “One-dimensional few-electron effective Wigner crystal
in quantum and classical regimes”. Physical Review B 101, (12). (2020).

[101] Alfred Alocias Mariadason. “Quantum many-Body Simulations of Double Dot System”.
MA thesis. (2018).

[102] Ronen Kroeze, Jom Luiten, and Servaas Kokkelmans. Trapped electrons in the quantum
degenerate regime. arXiv: 1508.00365. (2016).

[103] Jørgen Høgberget. “Quantum Monte-Carlo studies of generalized many-body systems”.
MA thesis. (2013).

[104] Di Luo and Bryan K. Clark. “Backflow Transformations via Neural Networks for Quantum
Many-Body Wave Functions”. Physical Review Letters 122, (22). (2019).

123

